

)

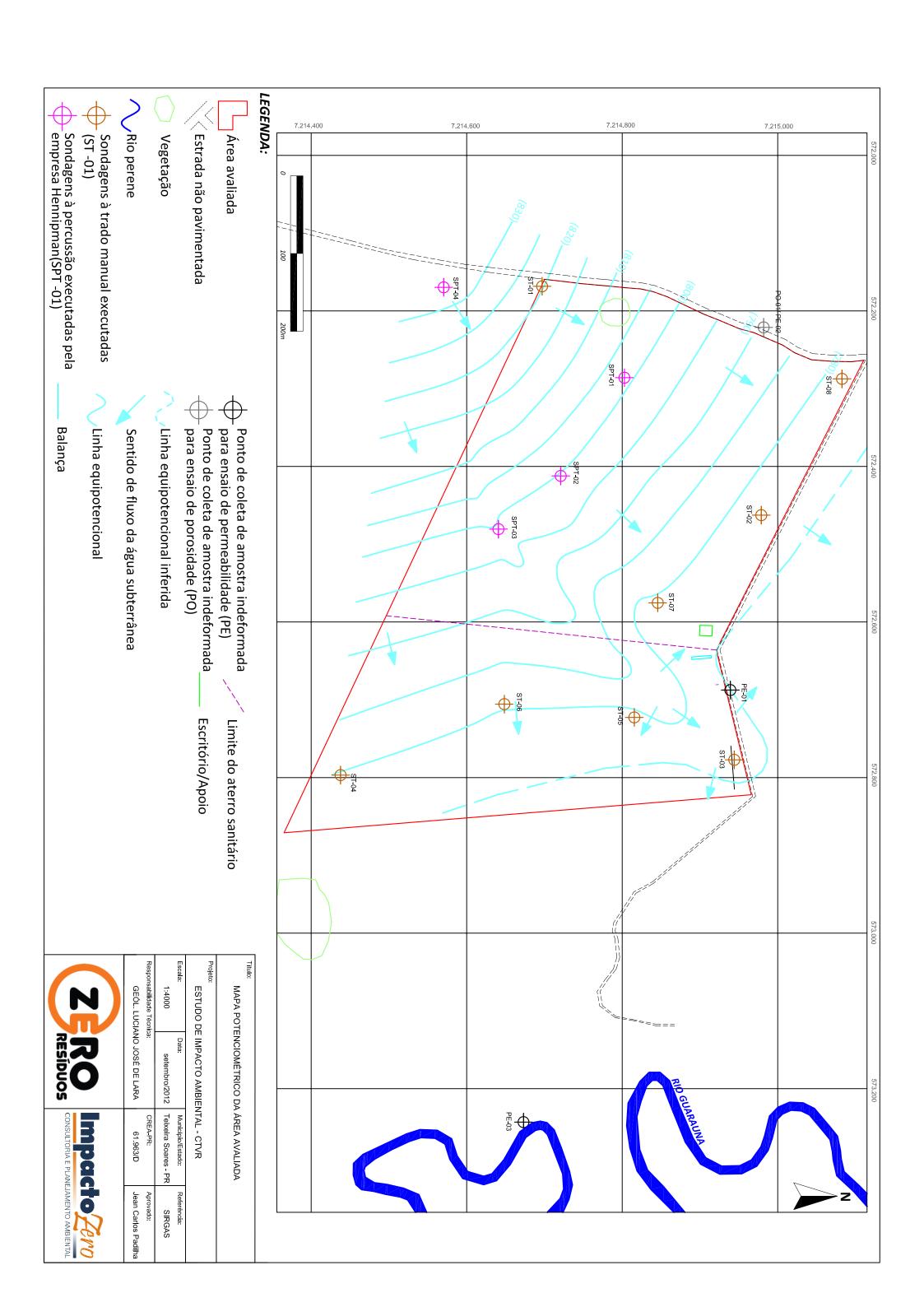
(*) Impenetrável ao trado

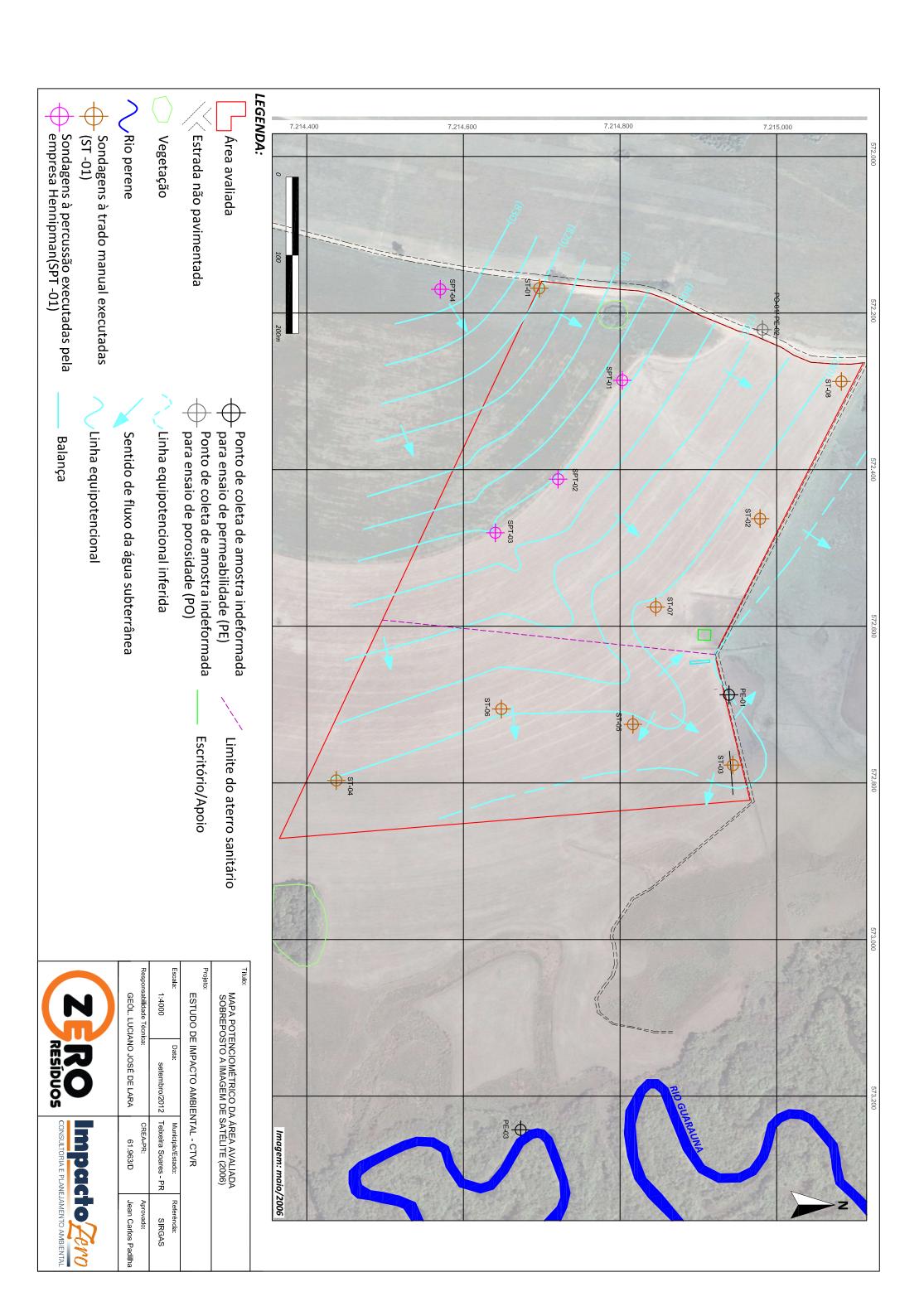
CH Carga hidráulica

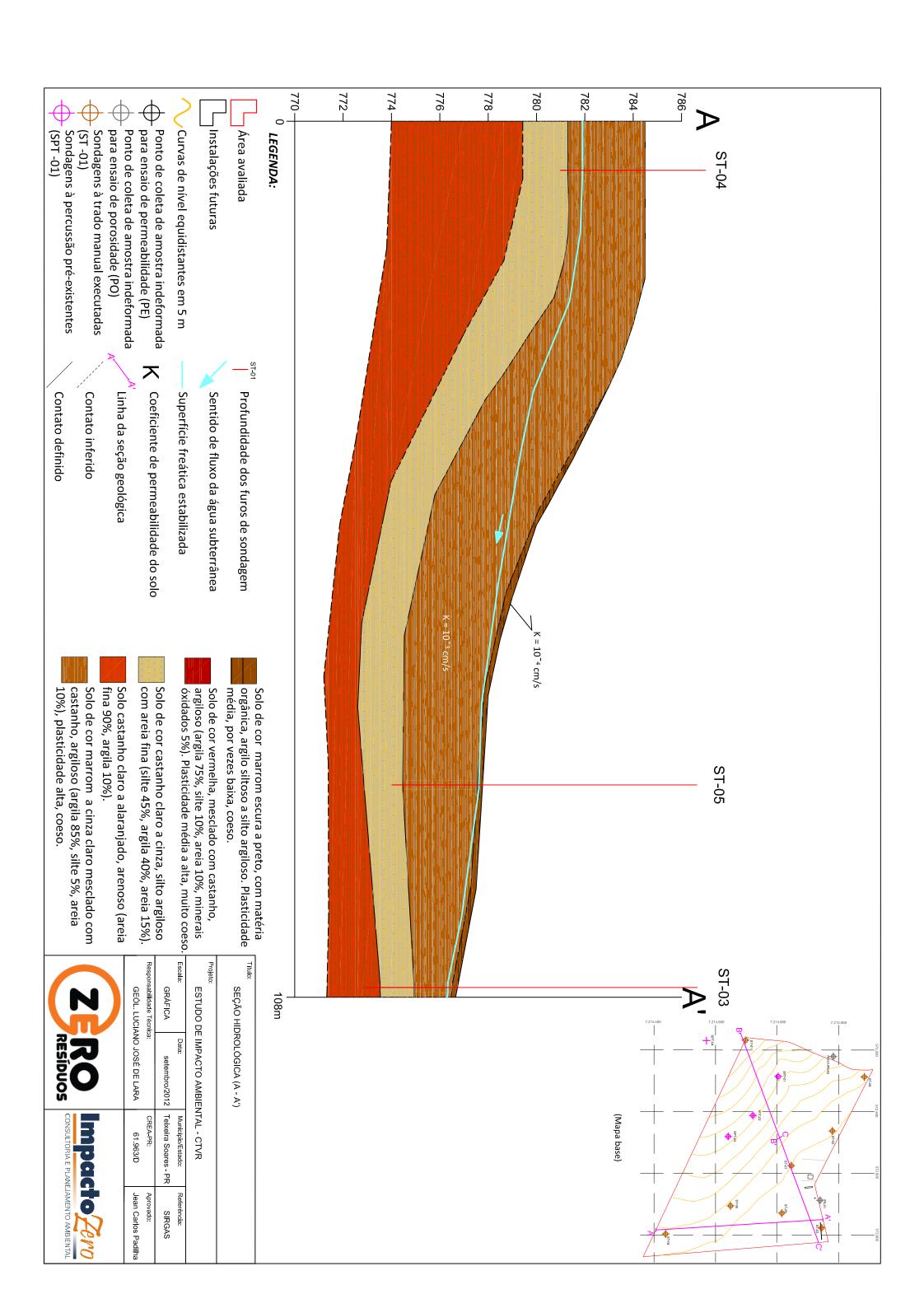
Nível d'água estabilizado

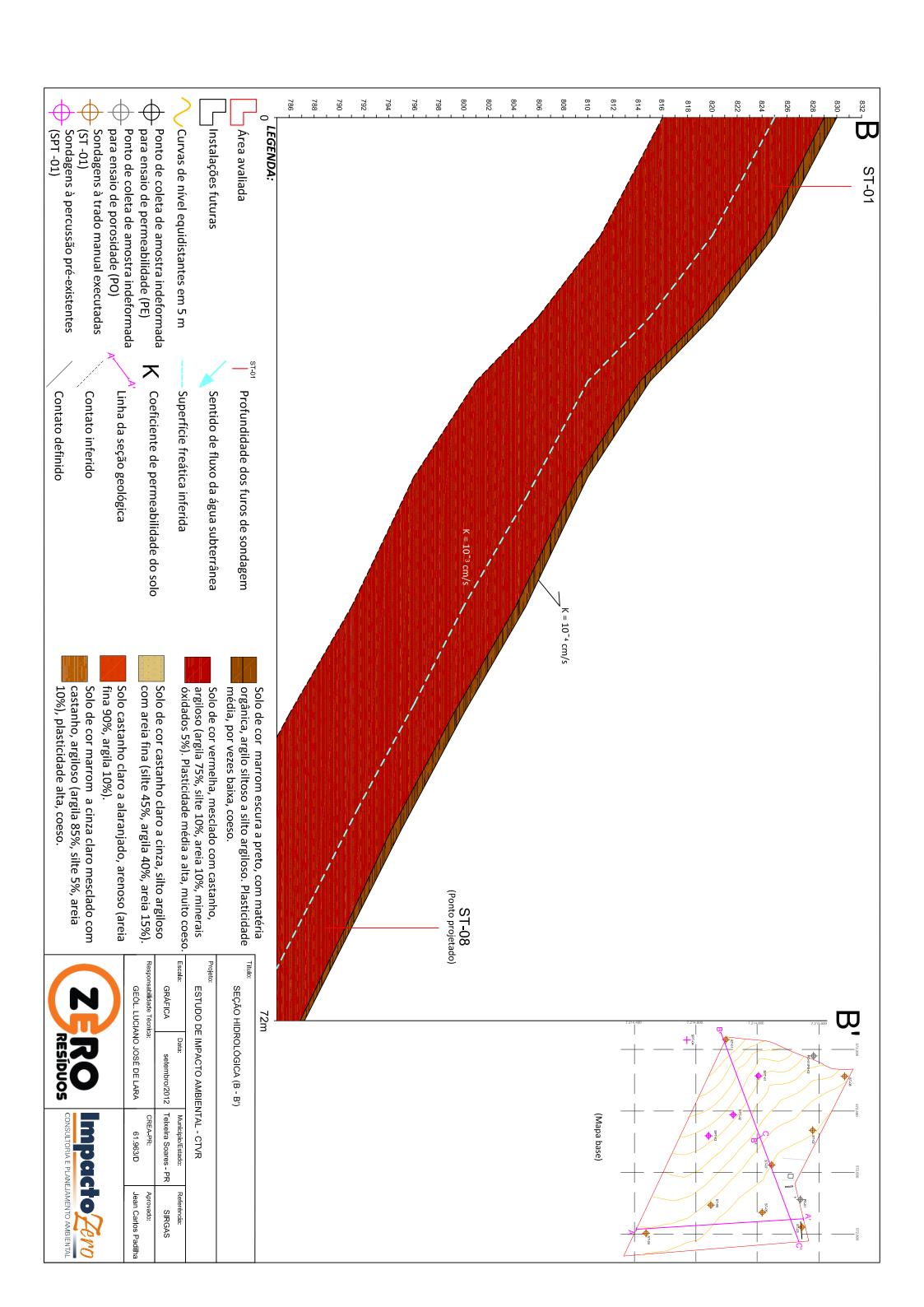
Solo de cor marrom escura a preto, com matéria orgânica, argilo siltoso a silto argiloso. Plasticidade

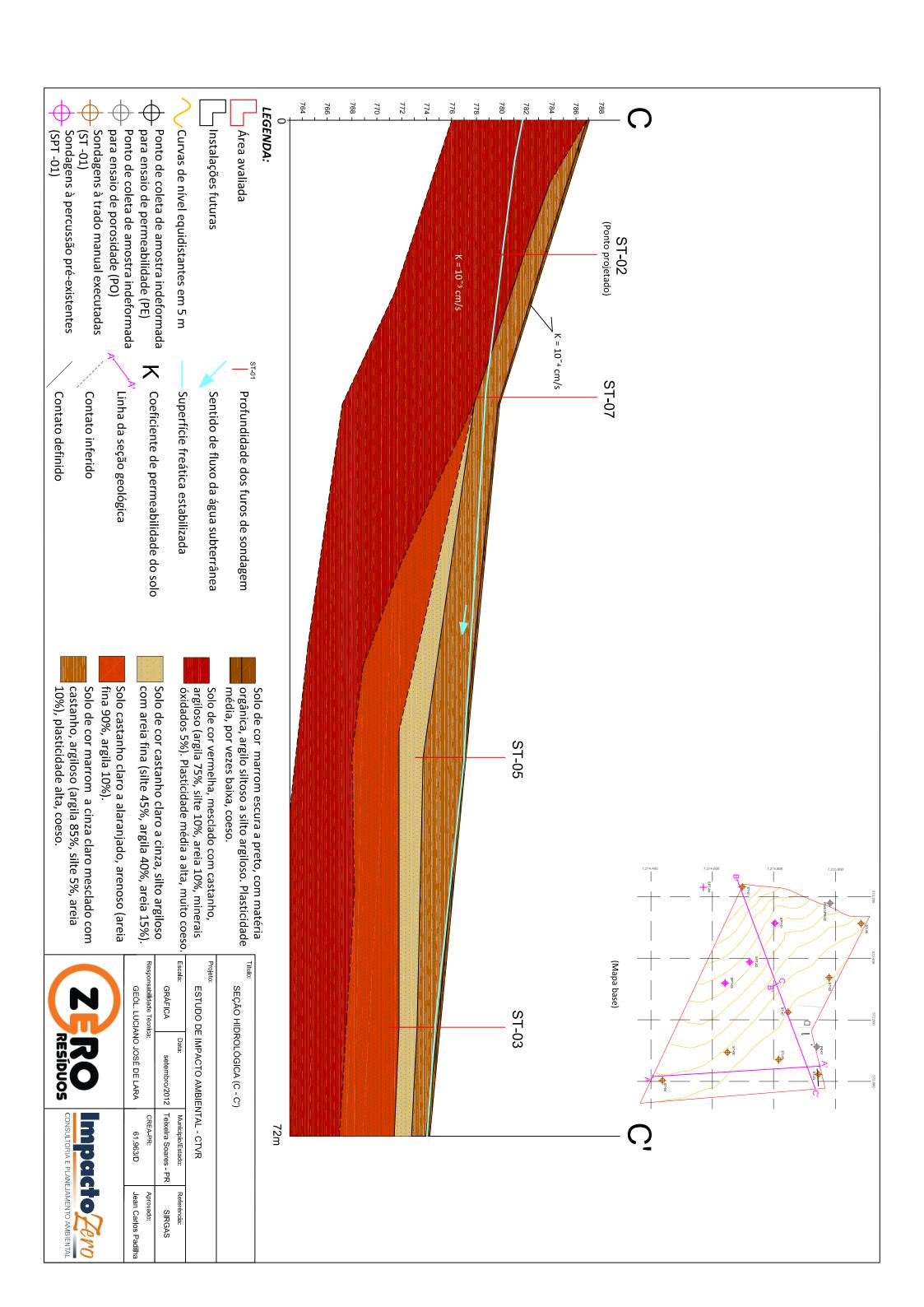
média, por vezes baixa, coeso.


Solo de cor vermelha, mesclado com castanho, argiloso (argila 75%, silte 10%, areia 10%, minerais óxidados 5%). Plasticidade média a alta, muito coeso. Solo de cor castanho claro a cinza, silto argiloso com areia fina (silte 45%, argila 40%, areia 15%).


Solo castanho claro a alaranjado, arenoso (areia fina 90%, argila 10%).


Solo de cor marrom a cinza claro mesclado com castanho, argiloso (argila 85%, silte 5%, areia 10%), plasticidade alta, coeso.


Projeto:
ESTUDO DE IMPACTO AMBIENTAL - CTVR


Escala:
GRÁFICA
Responsabilidade Técnica:
GEÓL, LUCIANO JOSÉ DE LARA
GEÓL, LUCIANO JOSÉ DE LARA
CREA-PR:
GEÓL C

LEGENDA:

Área avaliada

COMPARATIVO DE FOTOS AÉREAS MAI/1980 - MAI/2006 - ABRIL/2012

GEÓL. LUCIANO JOSÉ DE LARA

Escala:

GRÁFICA

Data:

Município / Estado:

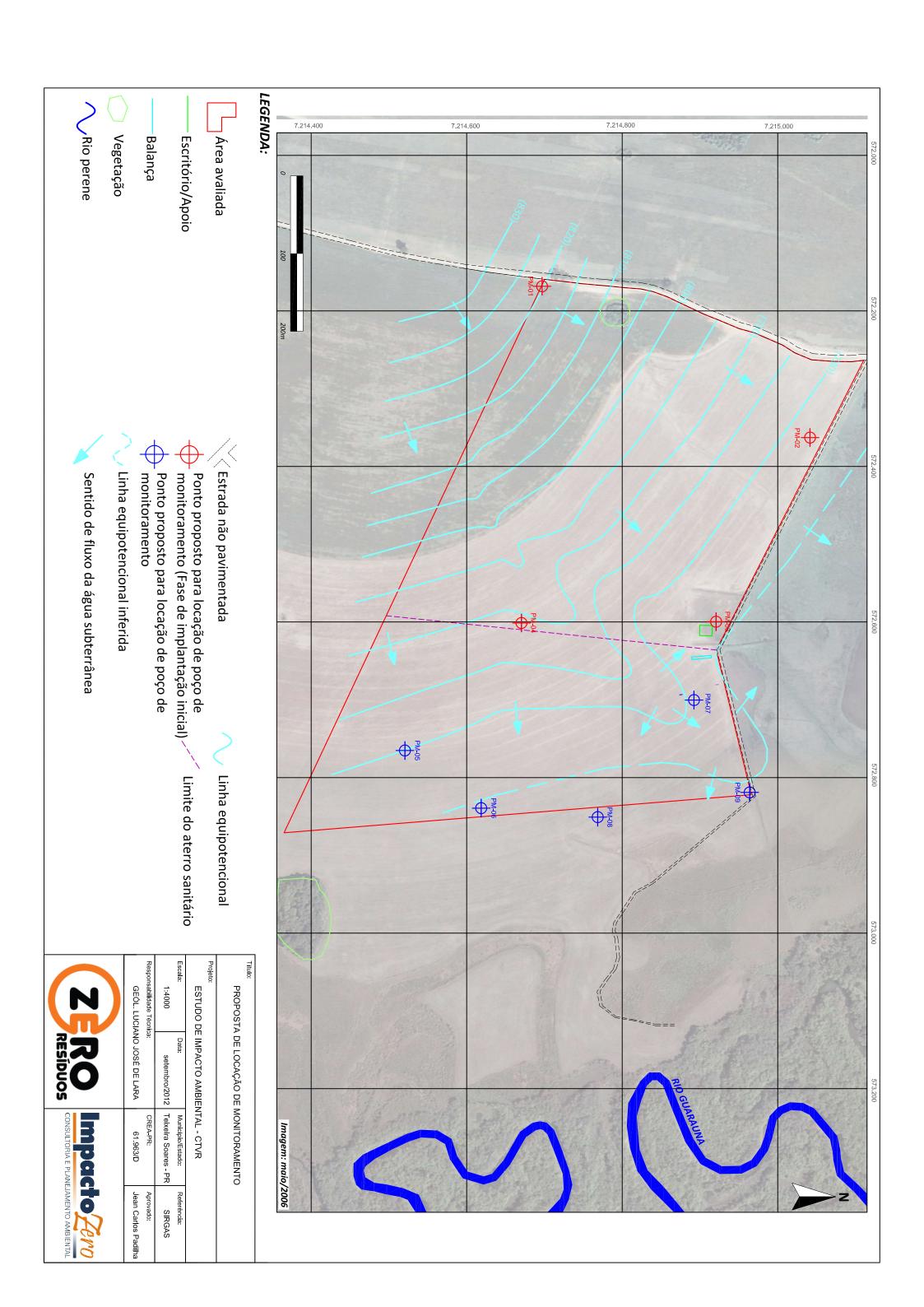
Teixeira Soares - PR

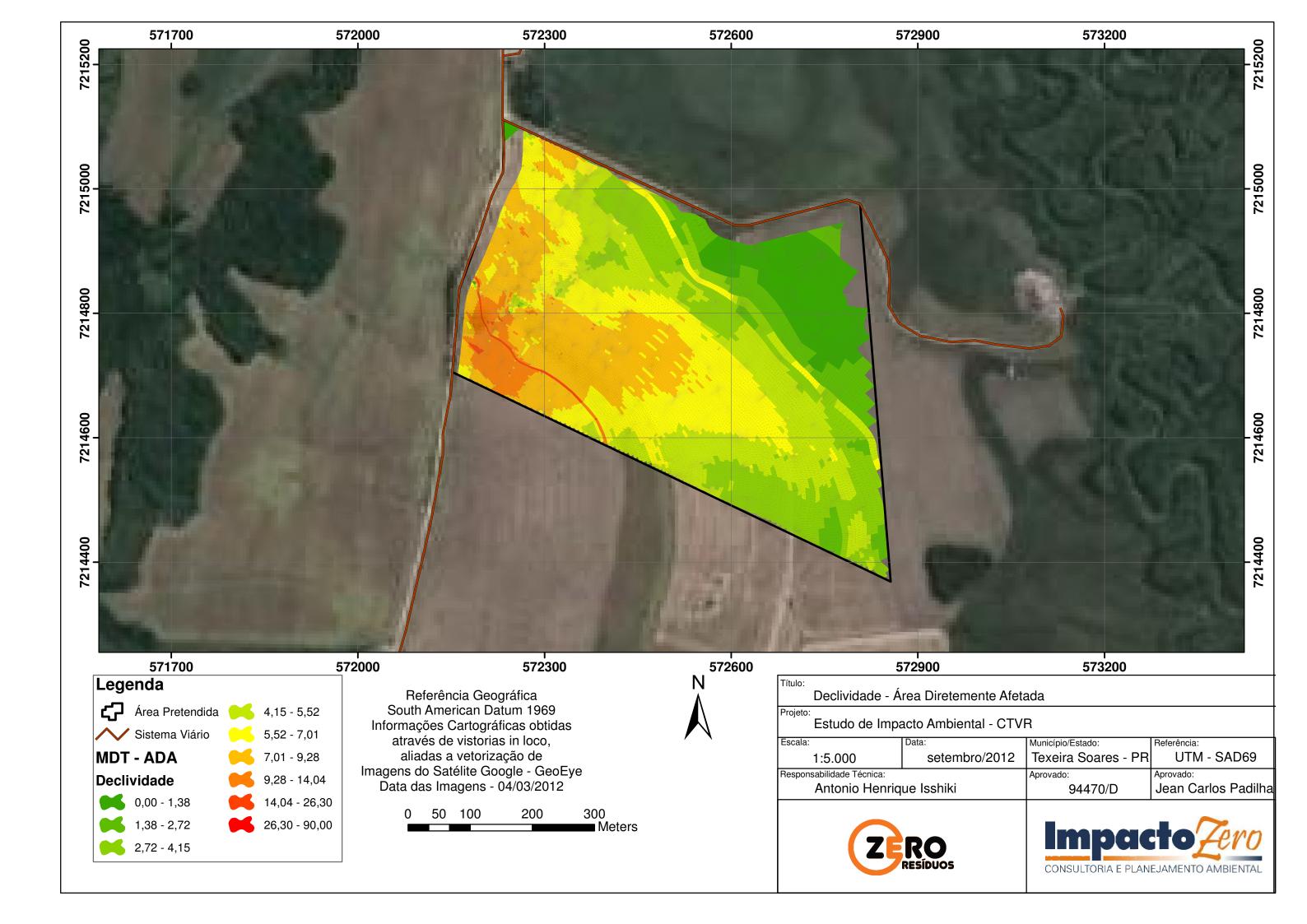
SIRGAS

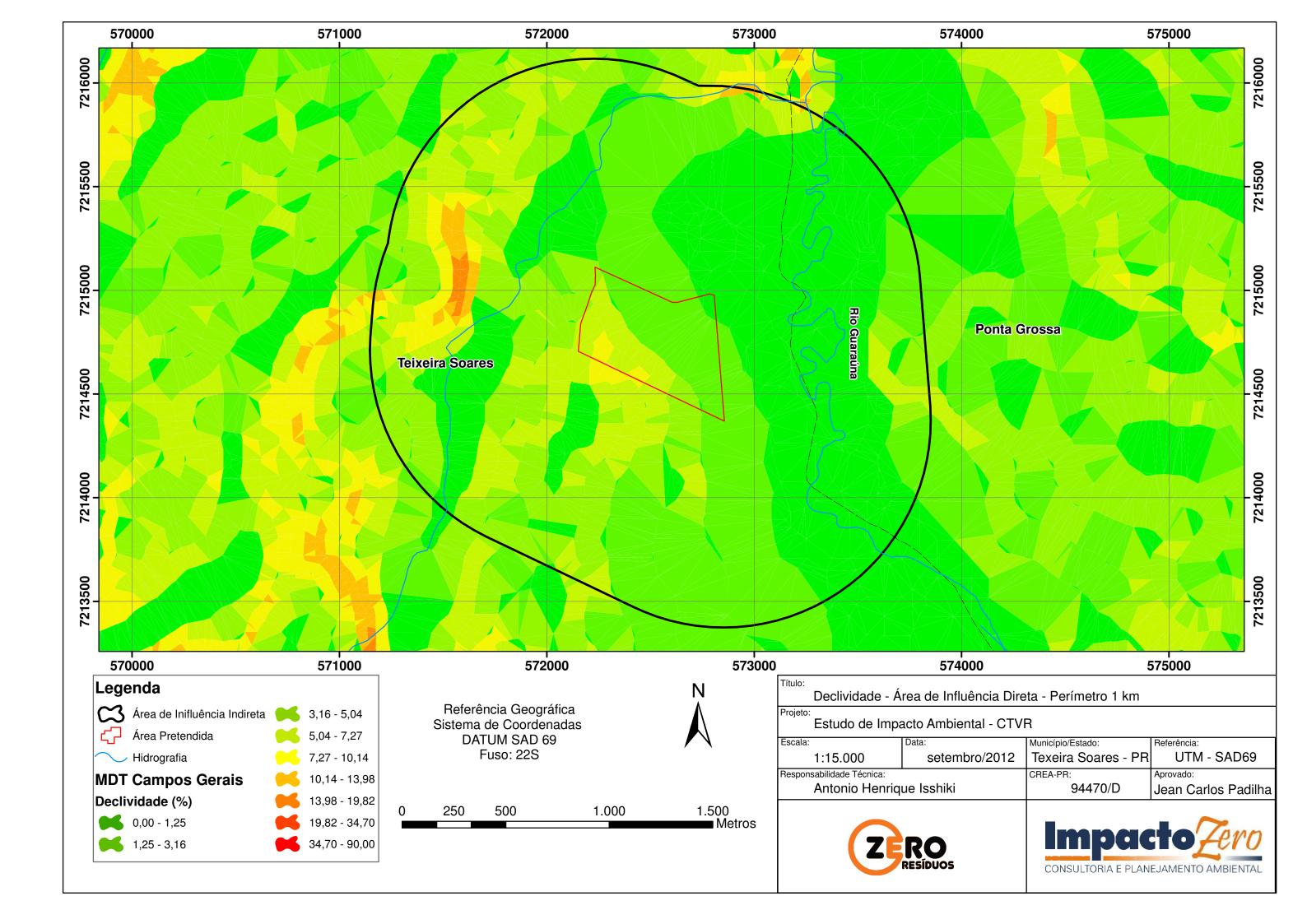
Responsabilidade Técnica:

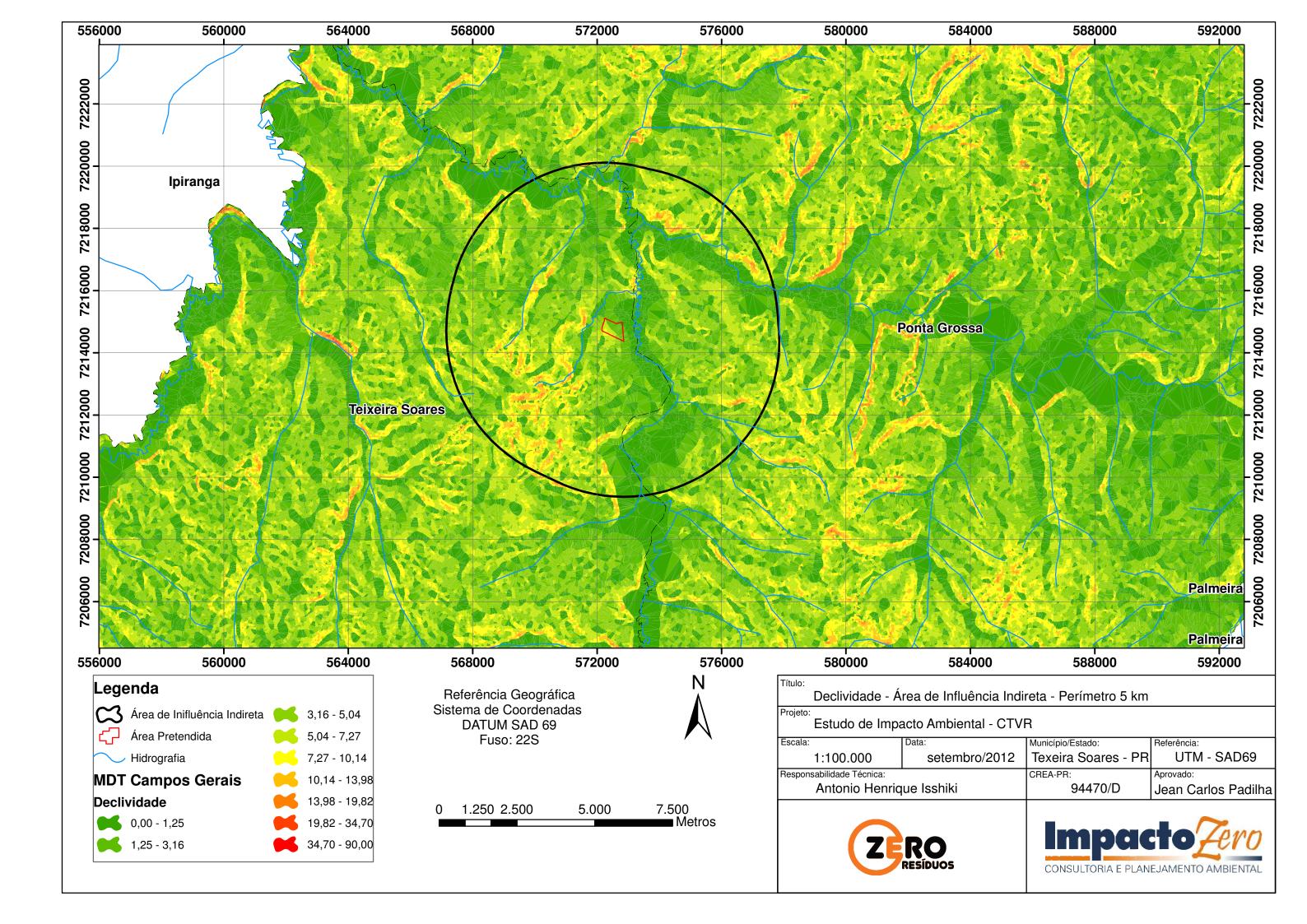
CREA-PR:

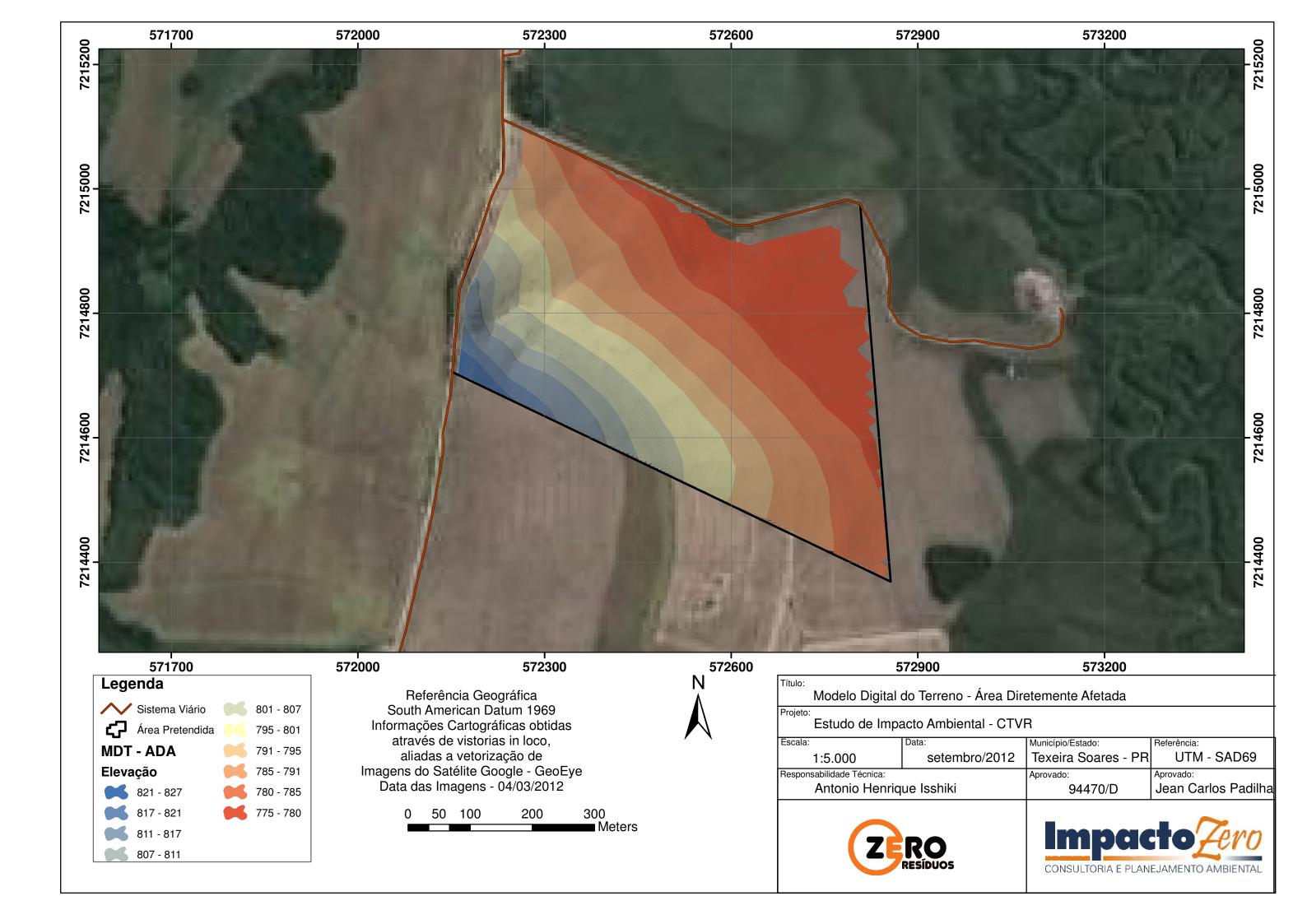
Aprovado:

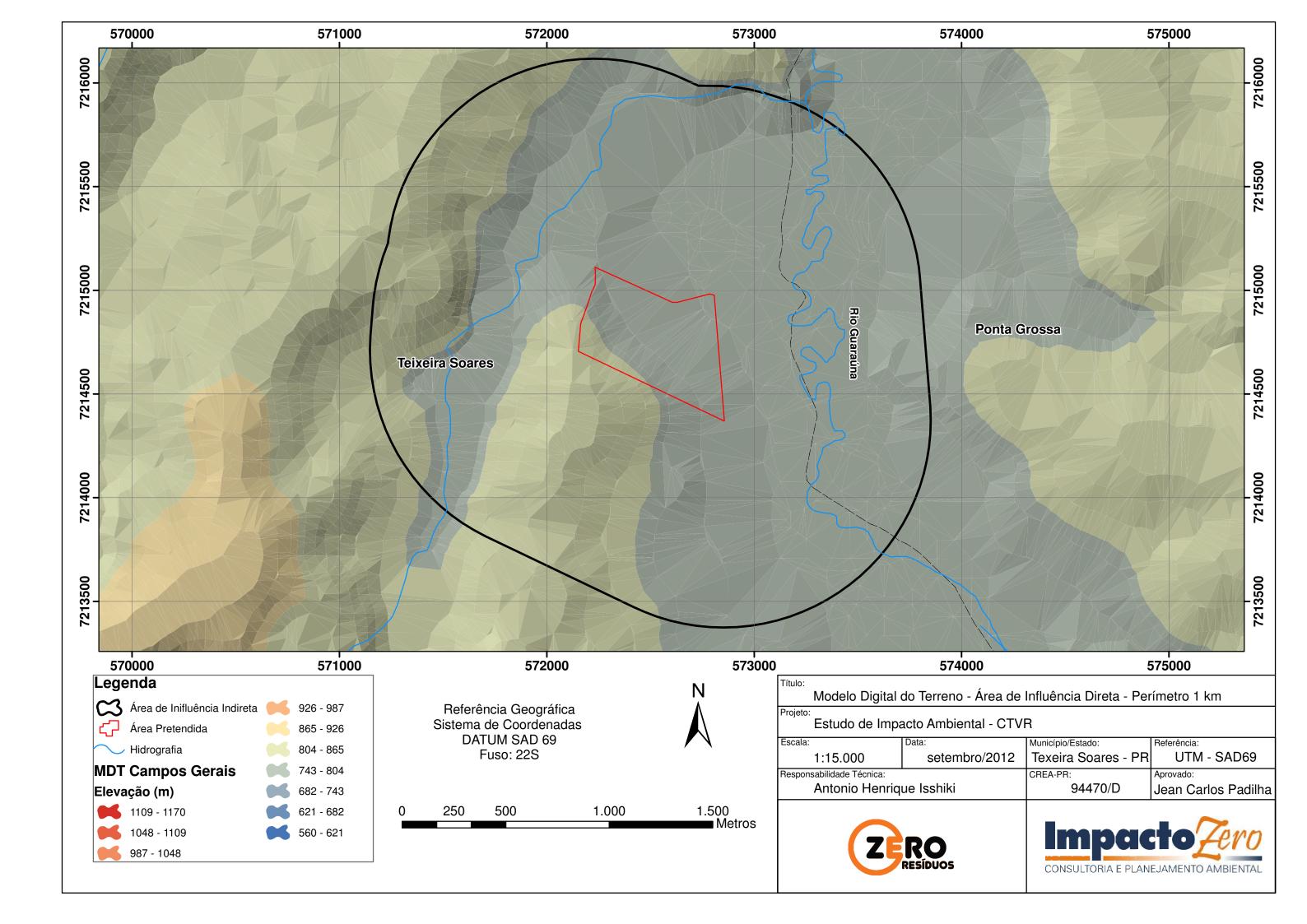

61.963/D

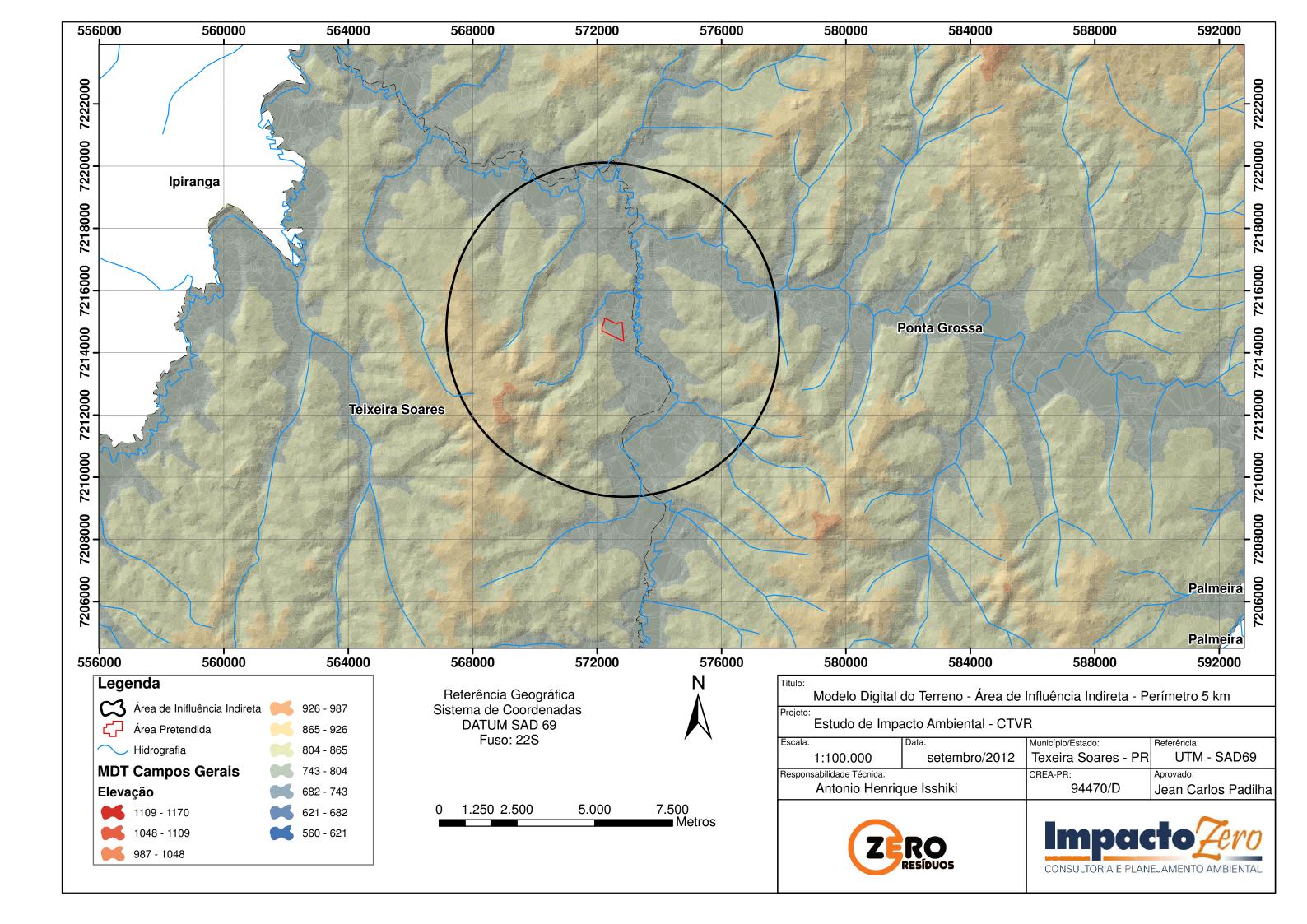

Jean Carlos Padilha

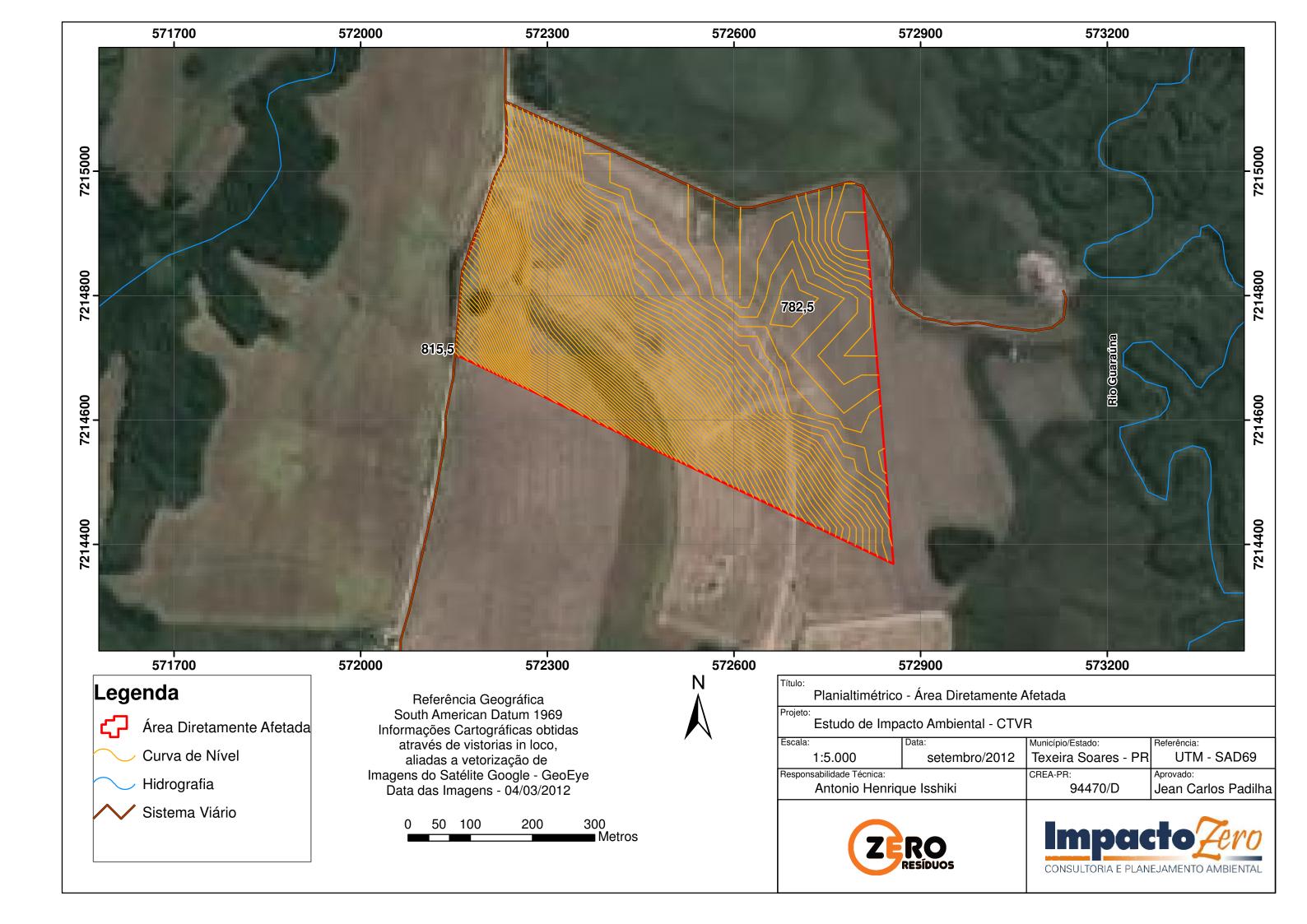

ESTUDO DE IMPACTO AMBIENTAL - CTVR

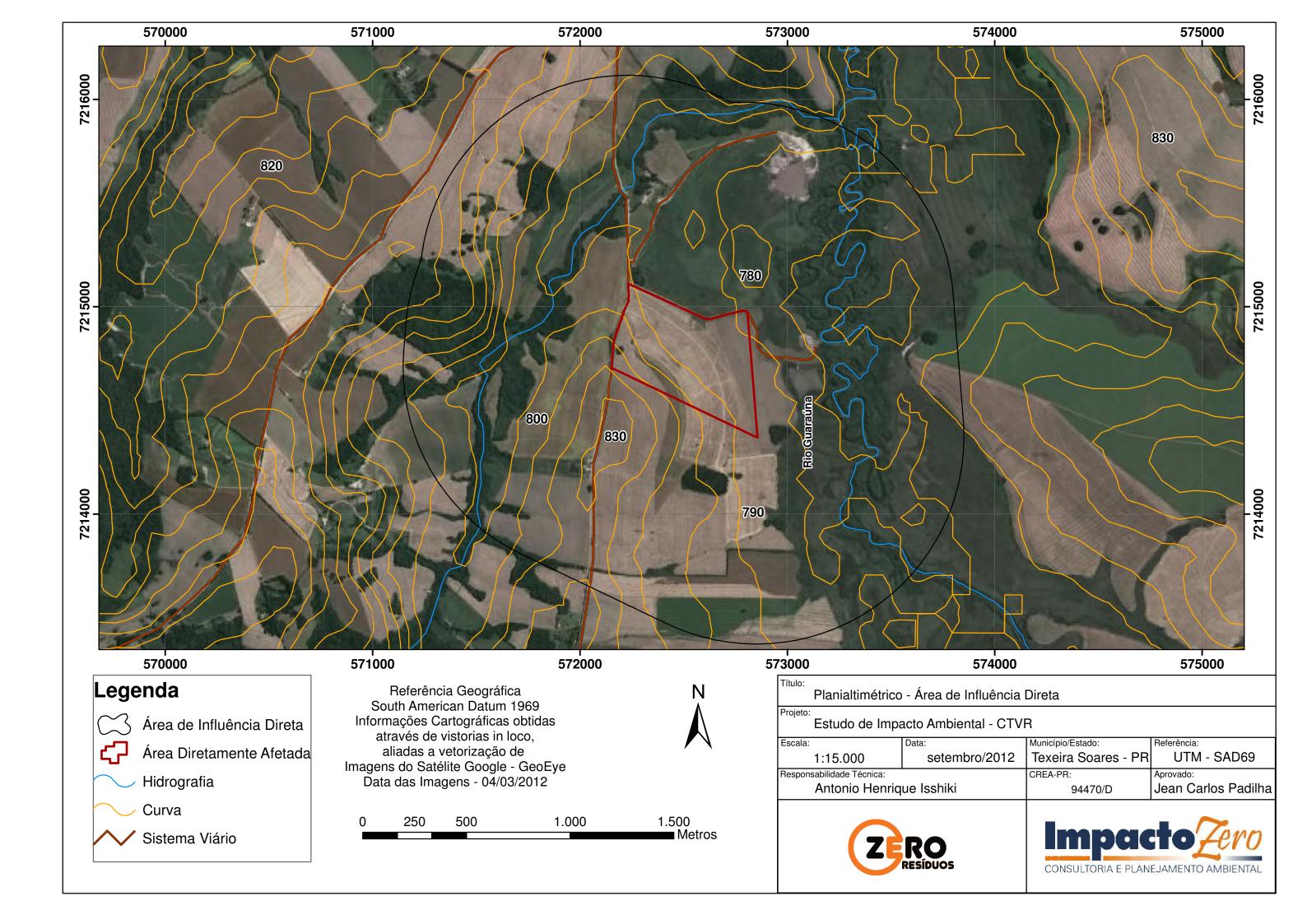


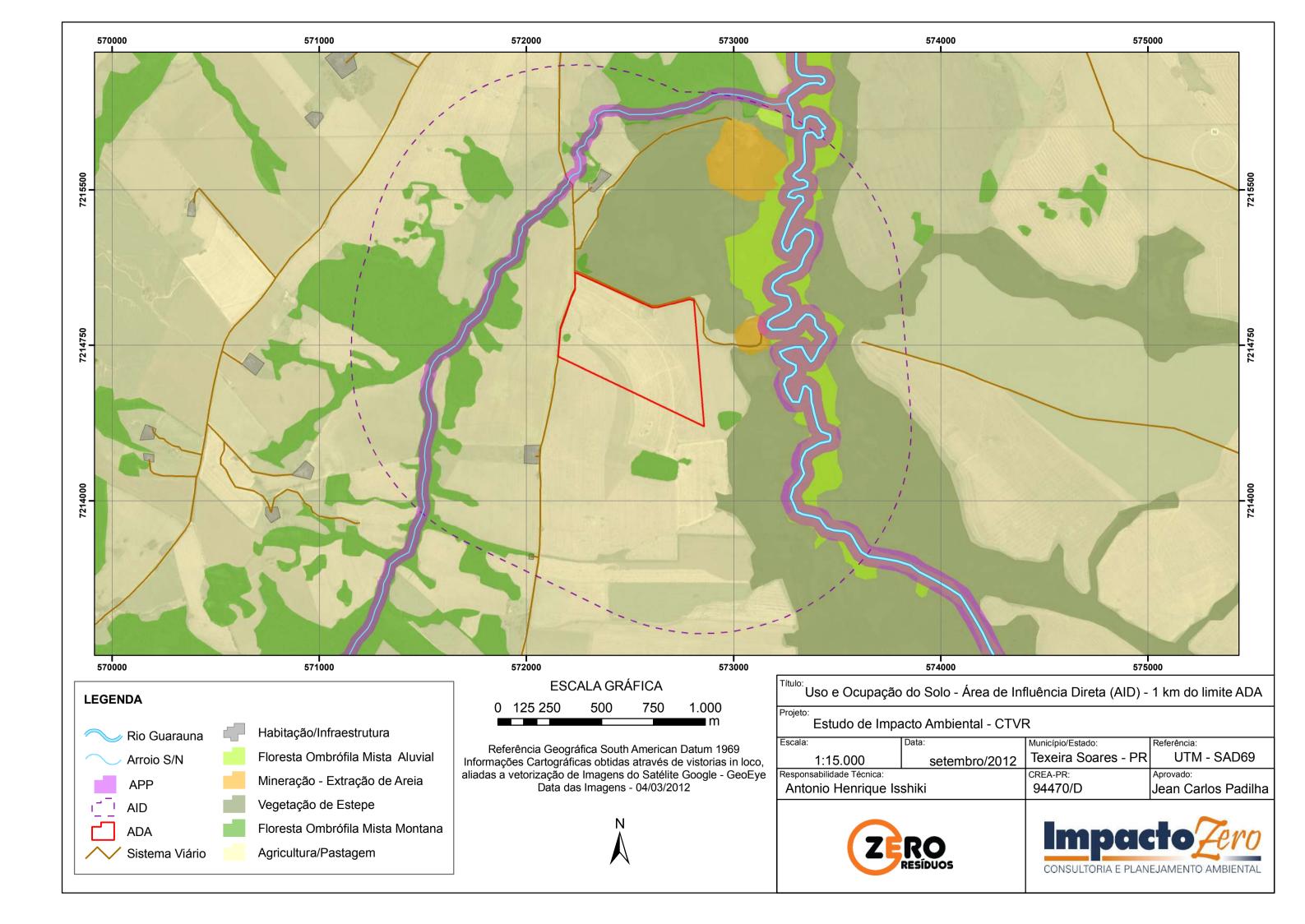


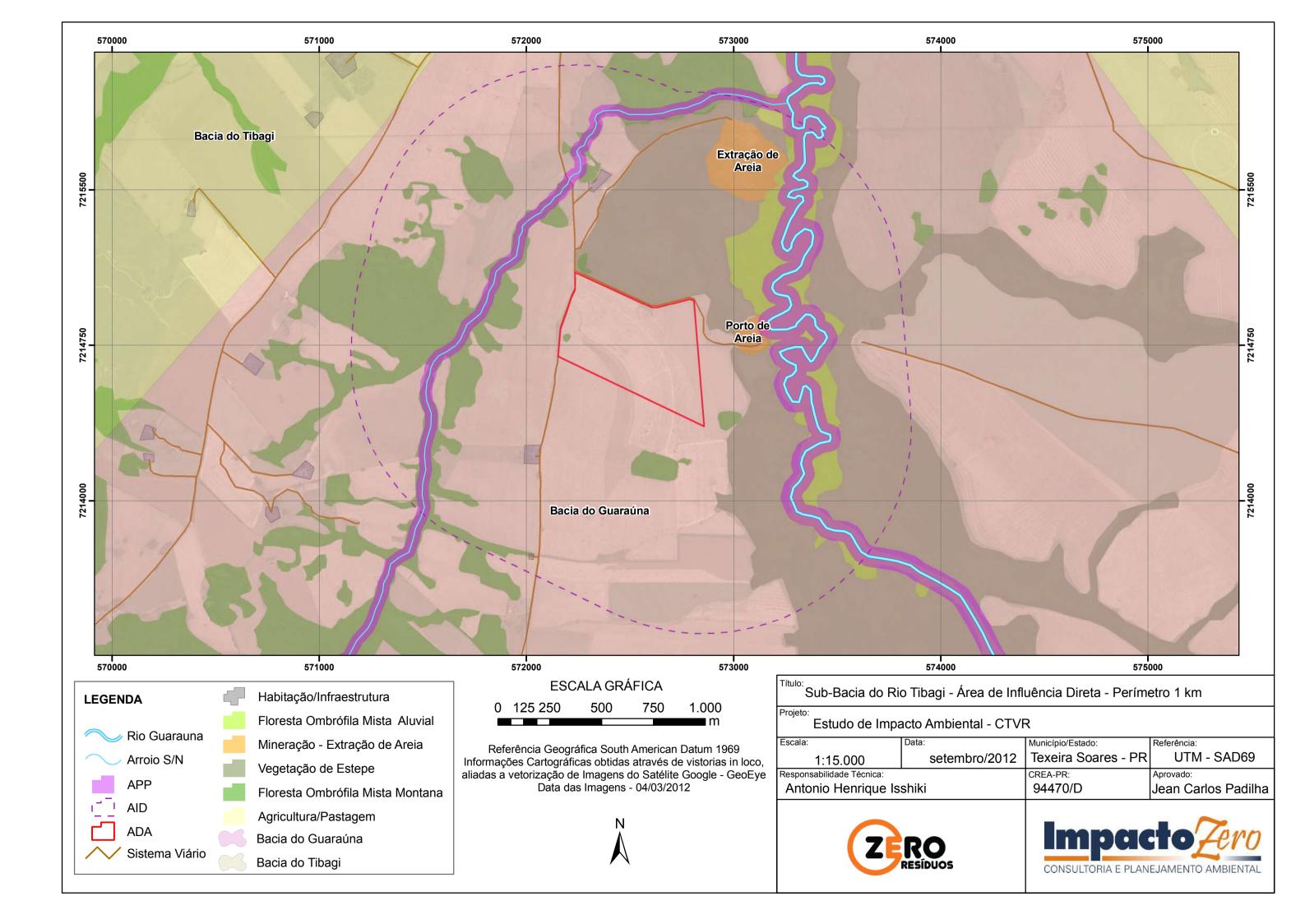


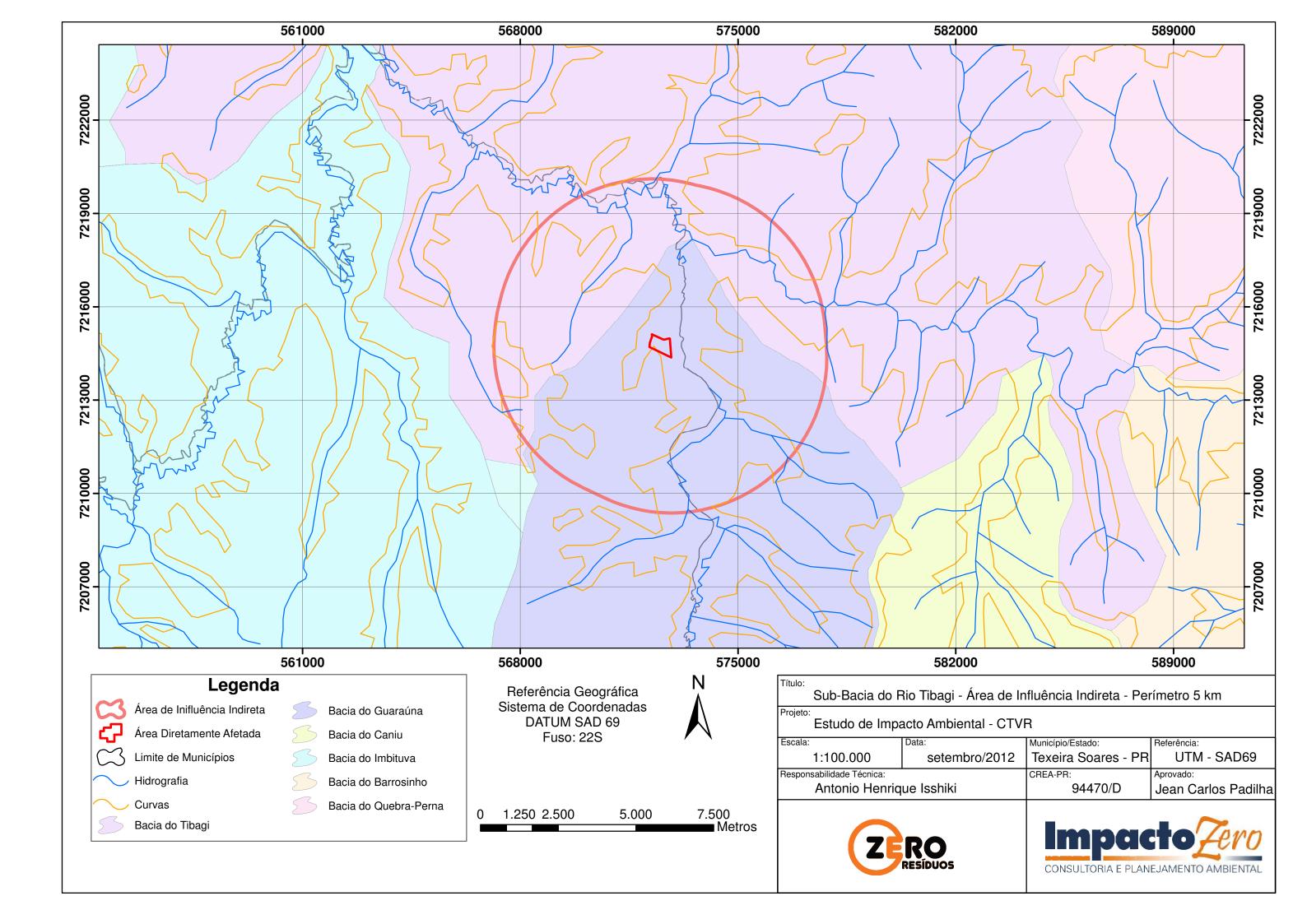


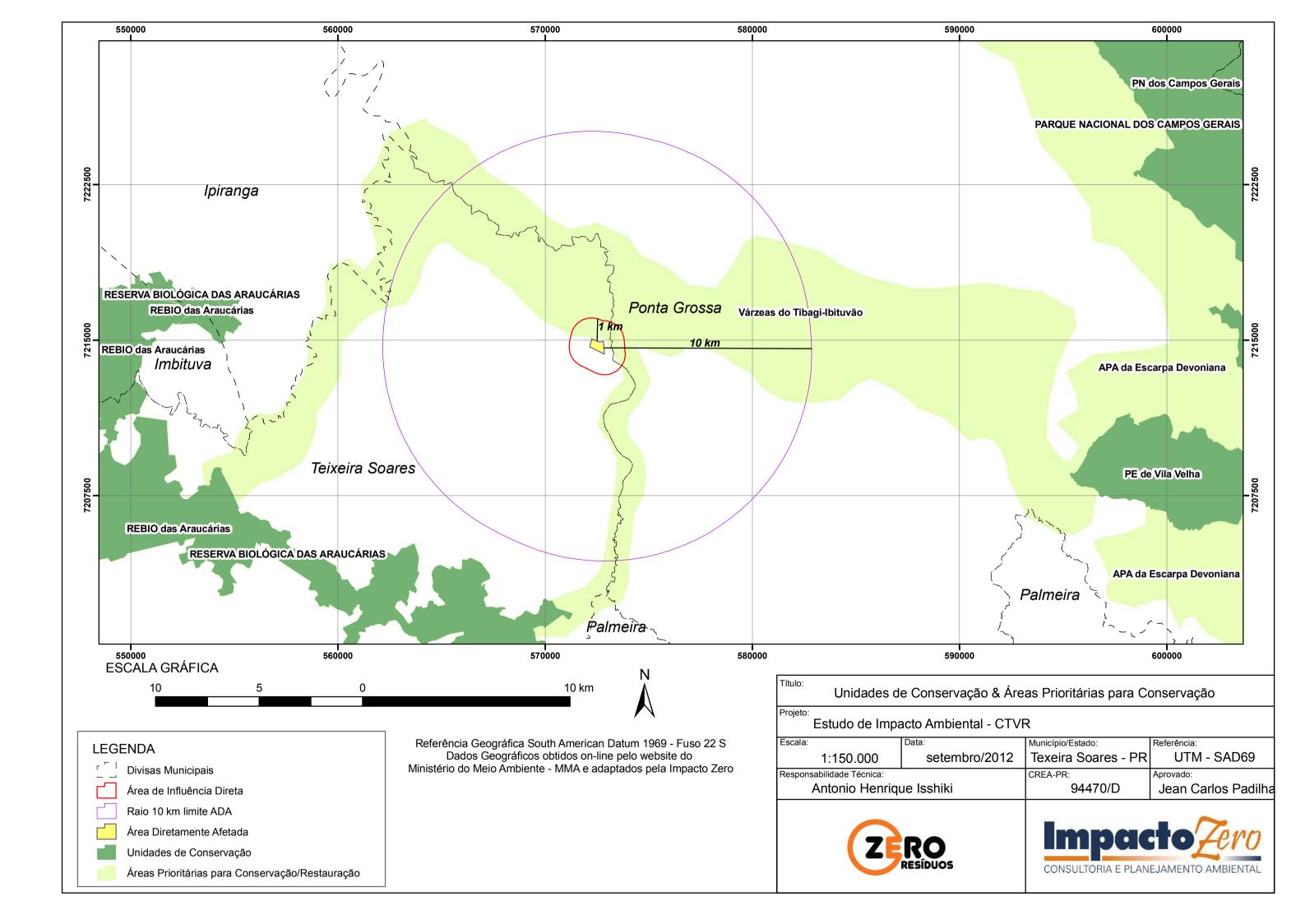


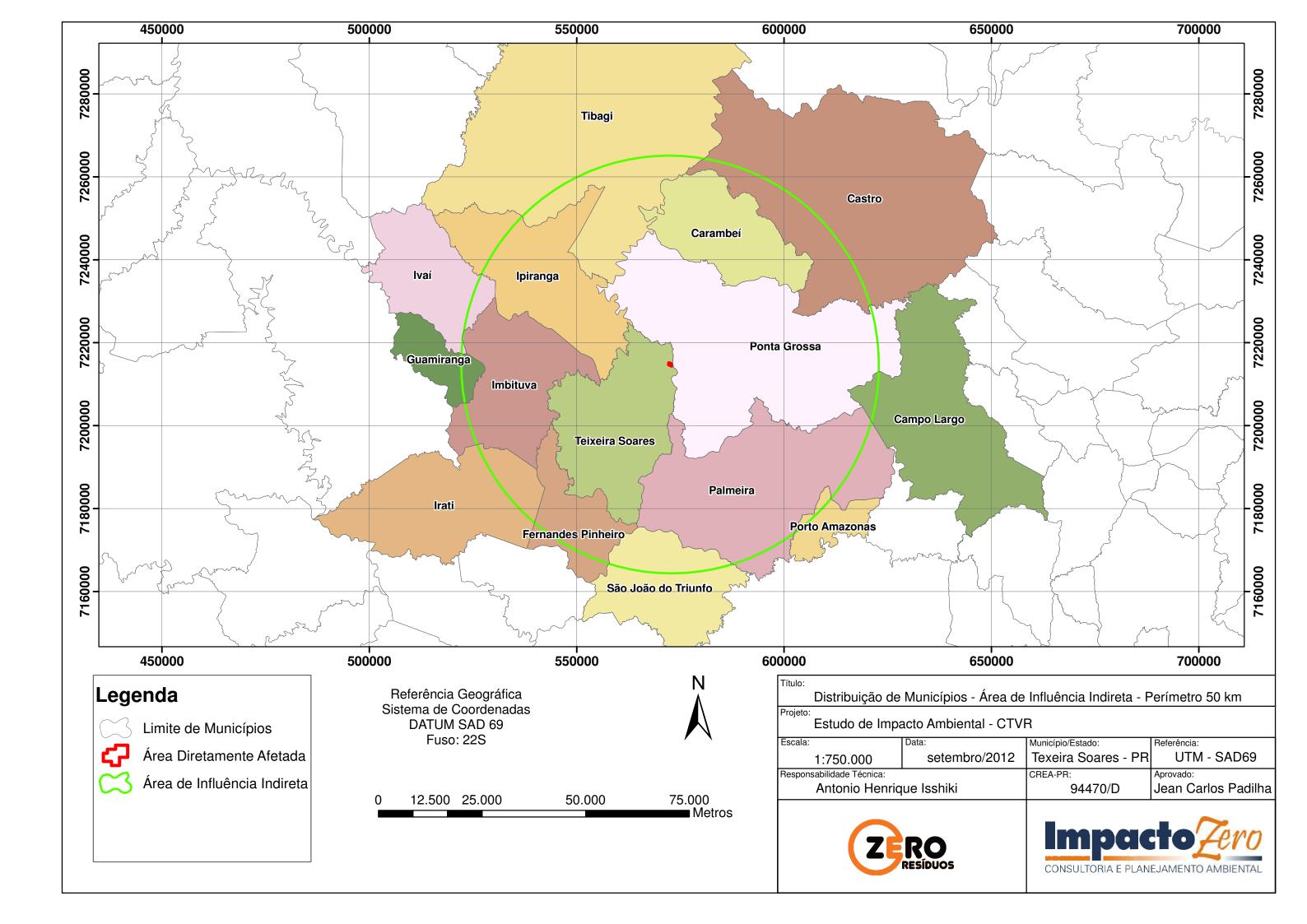


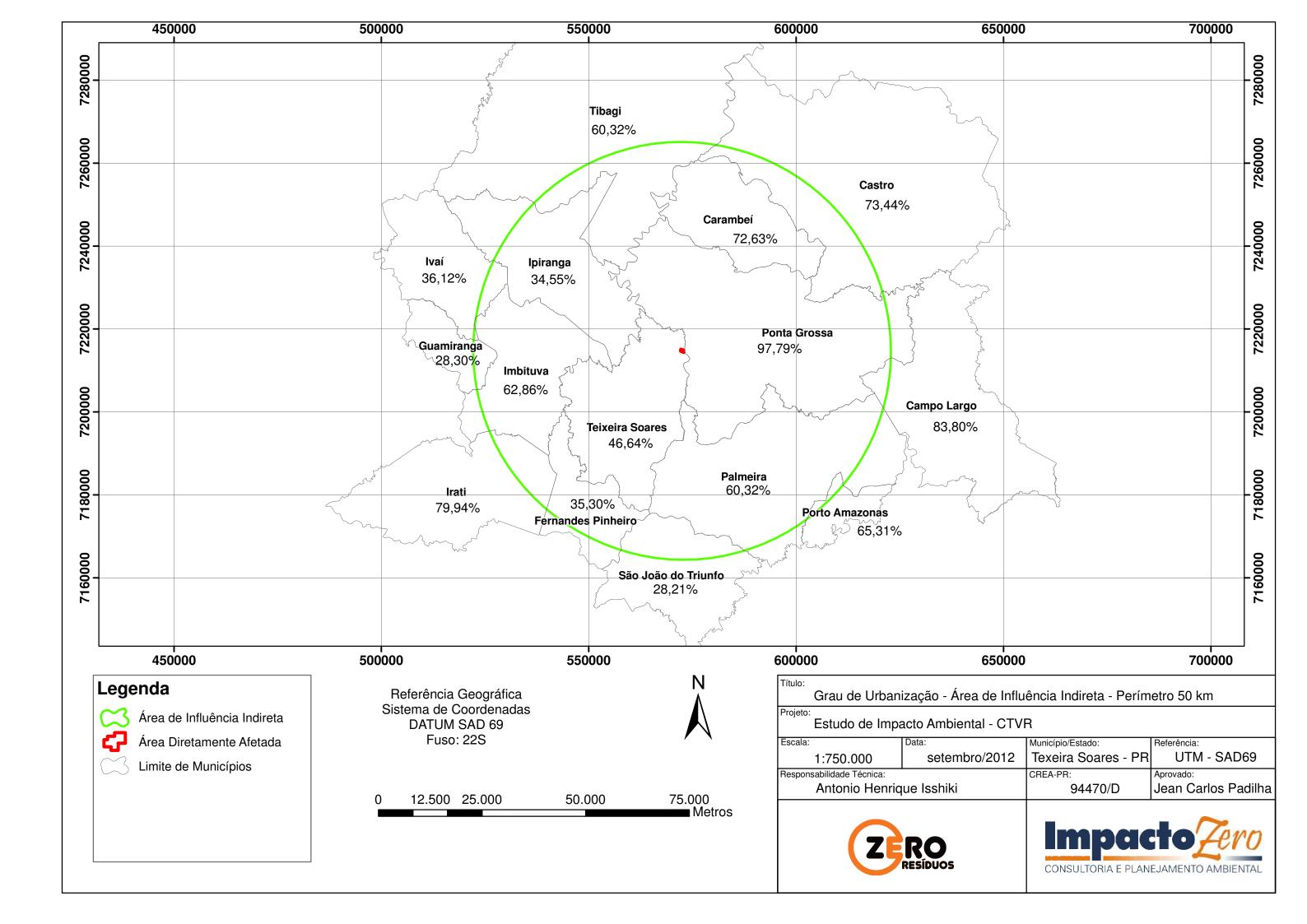


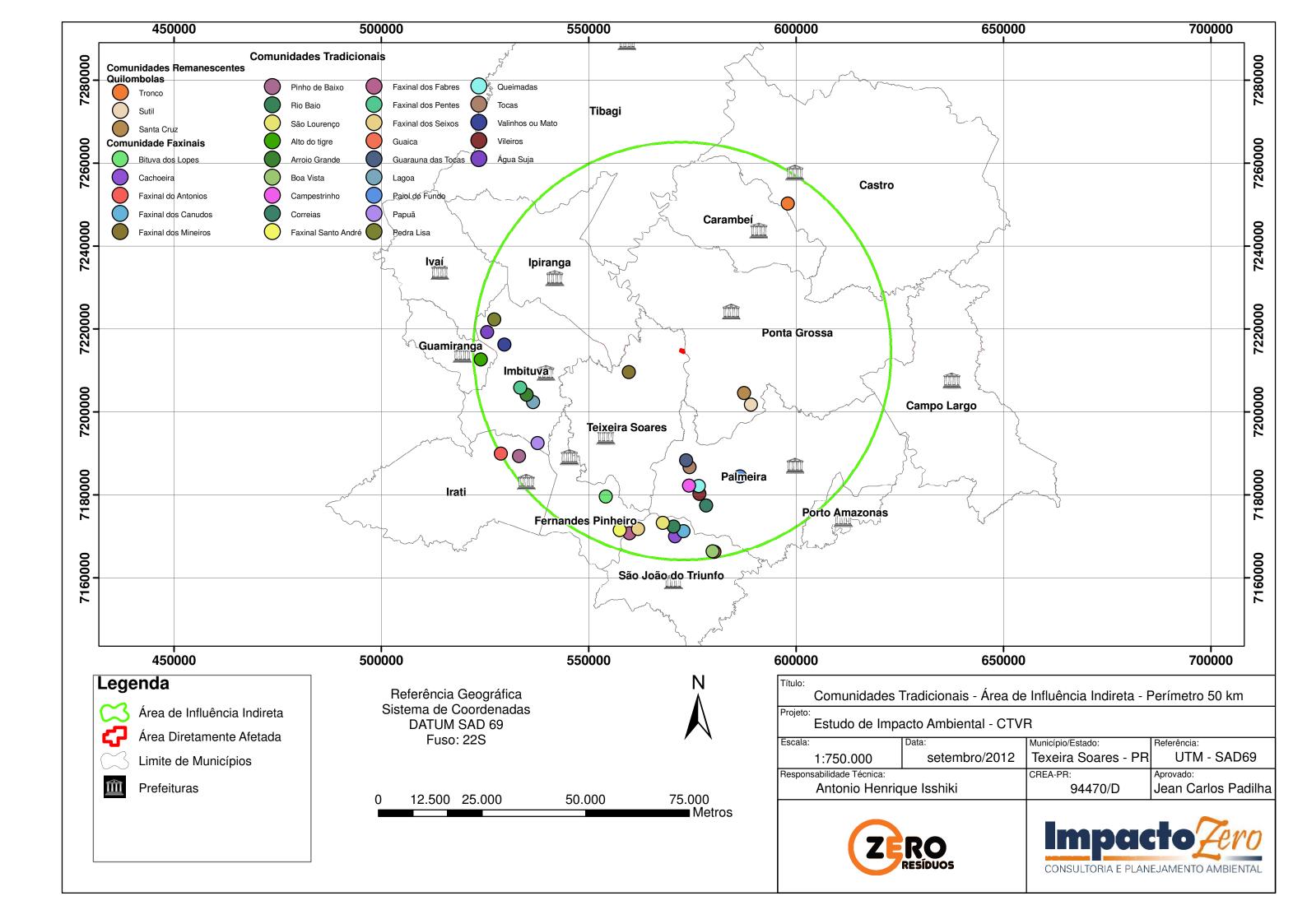


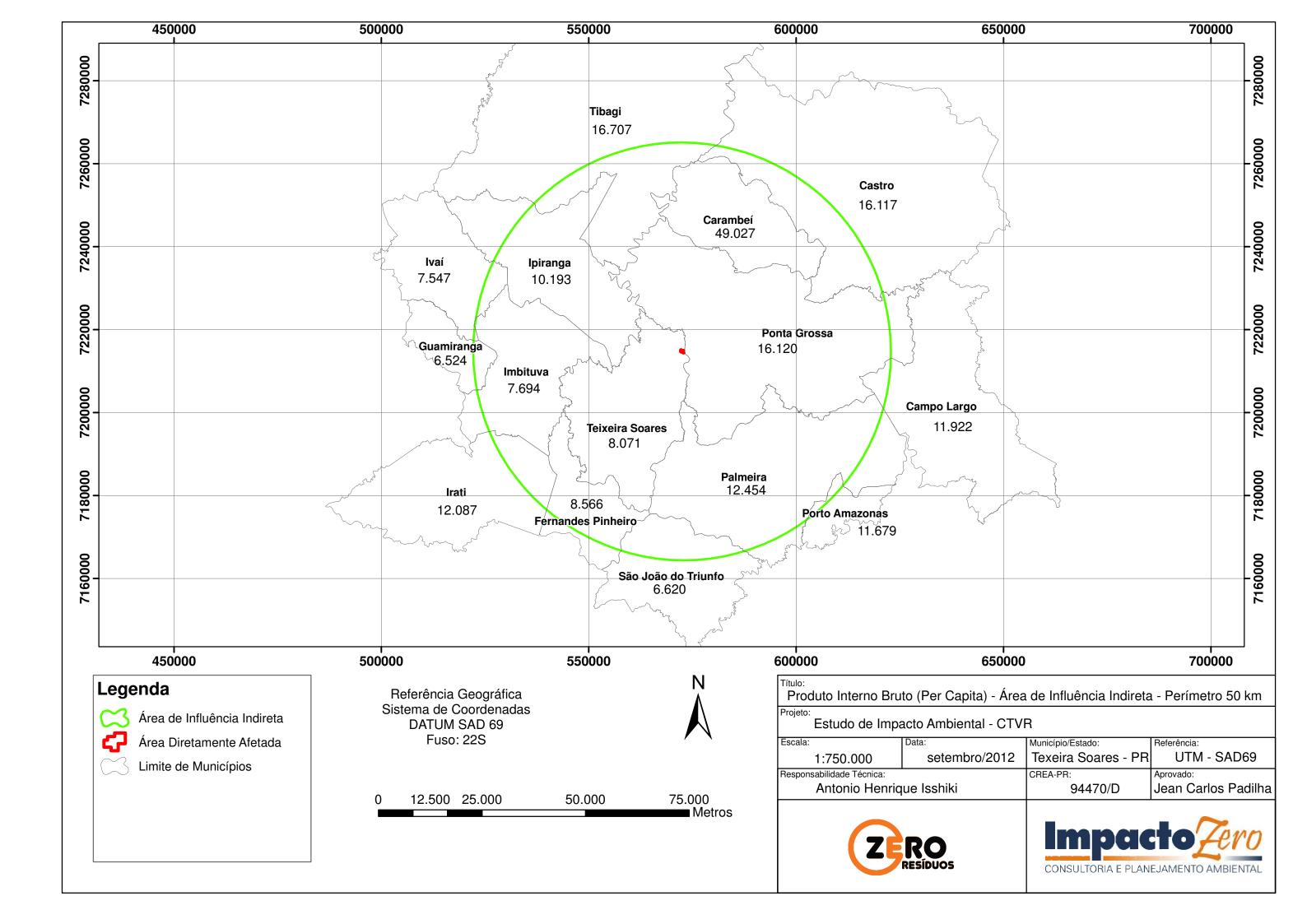


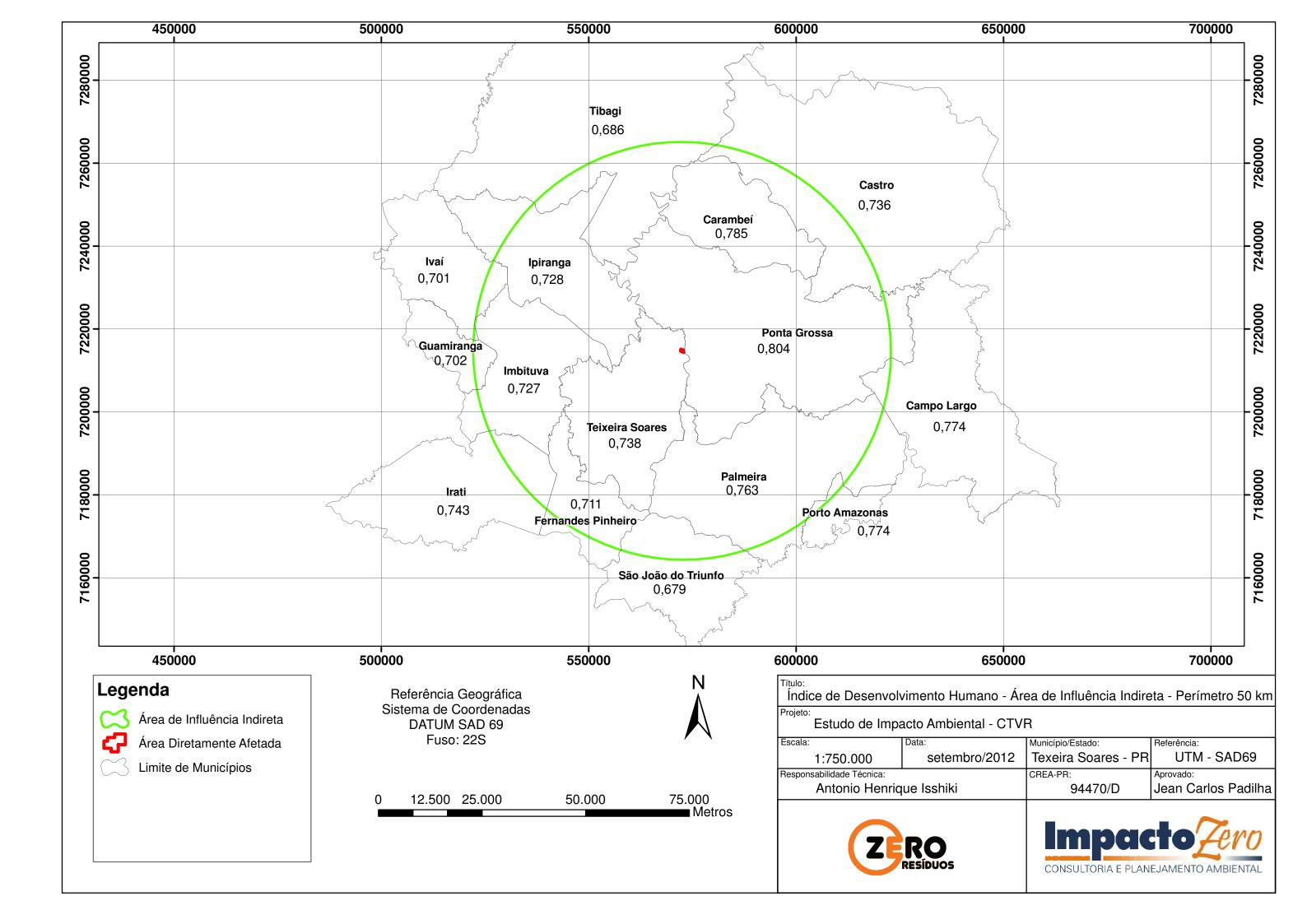


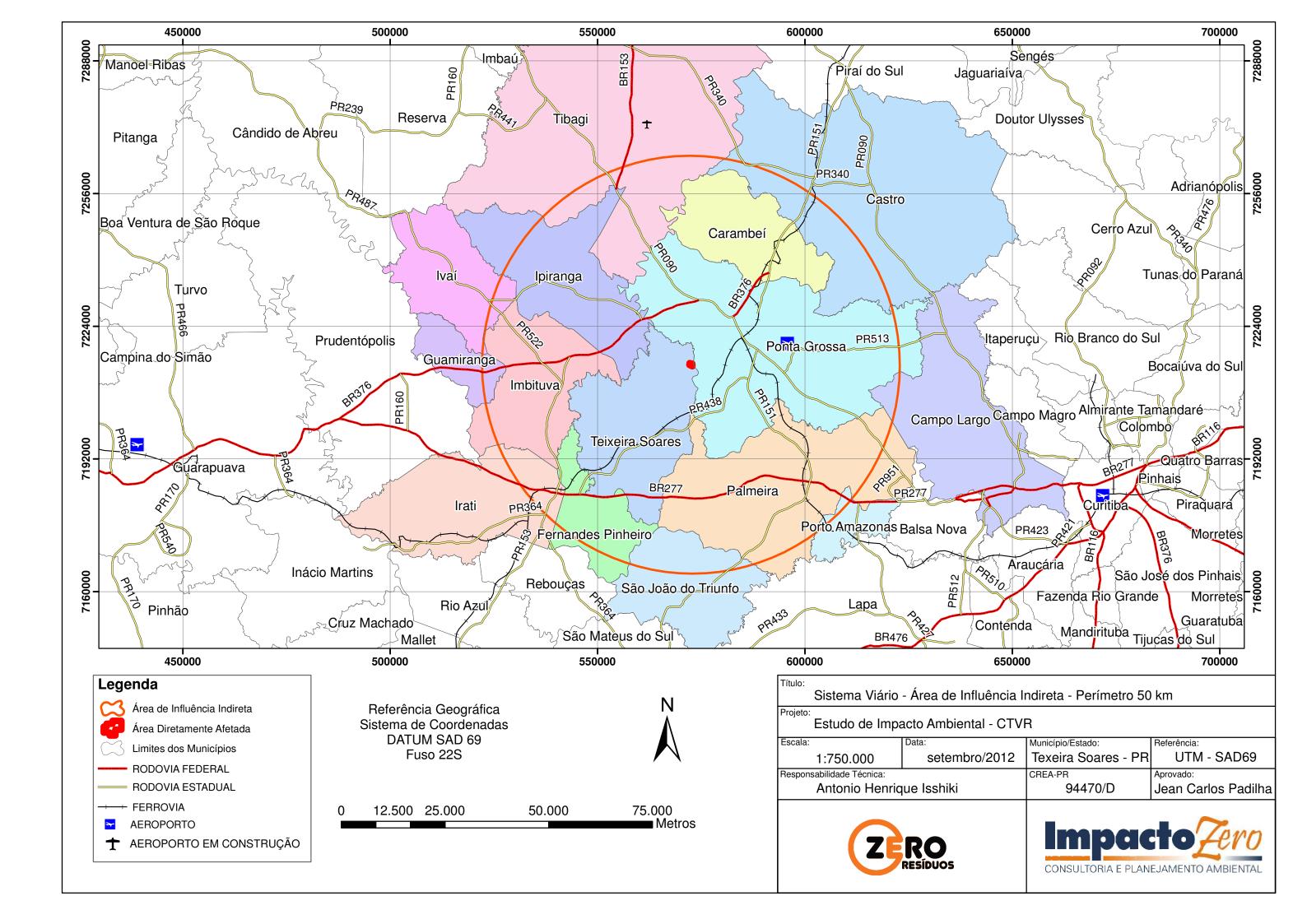


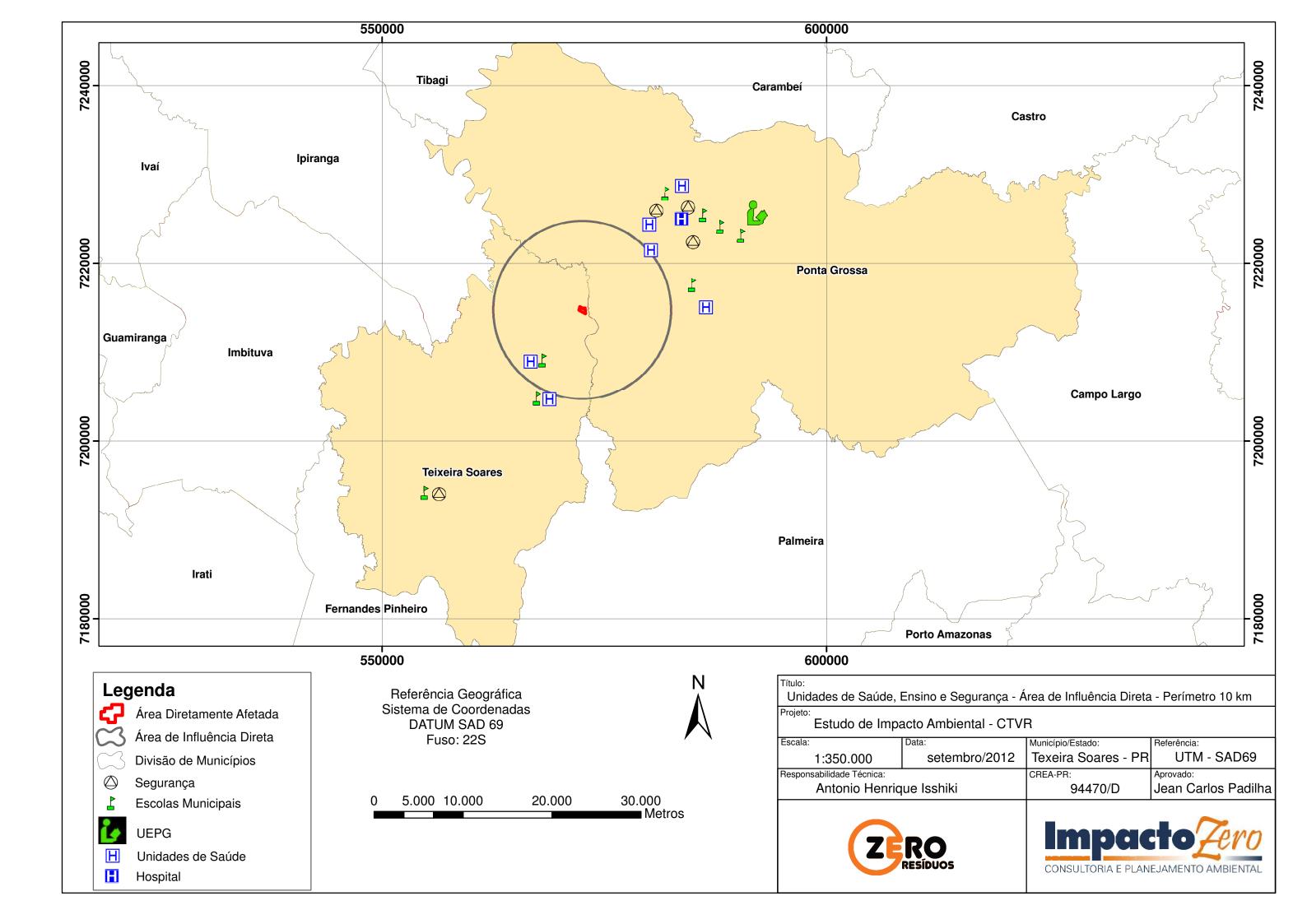


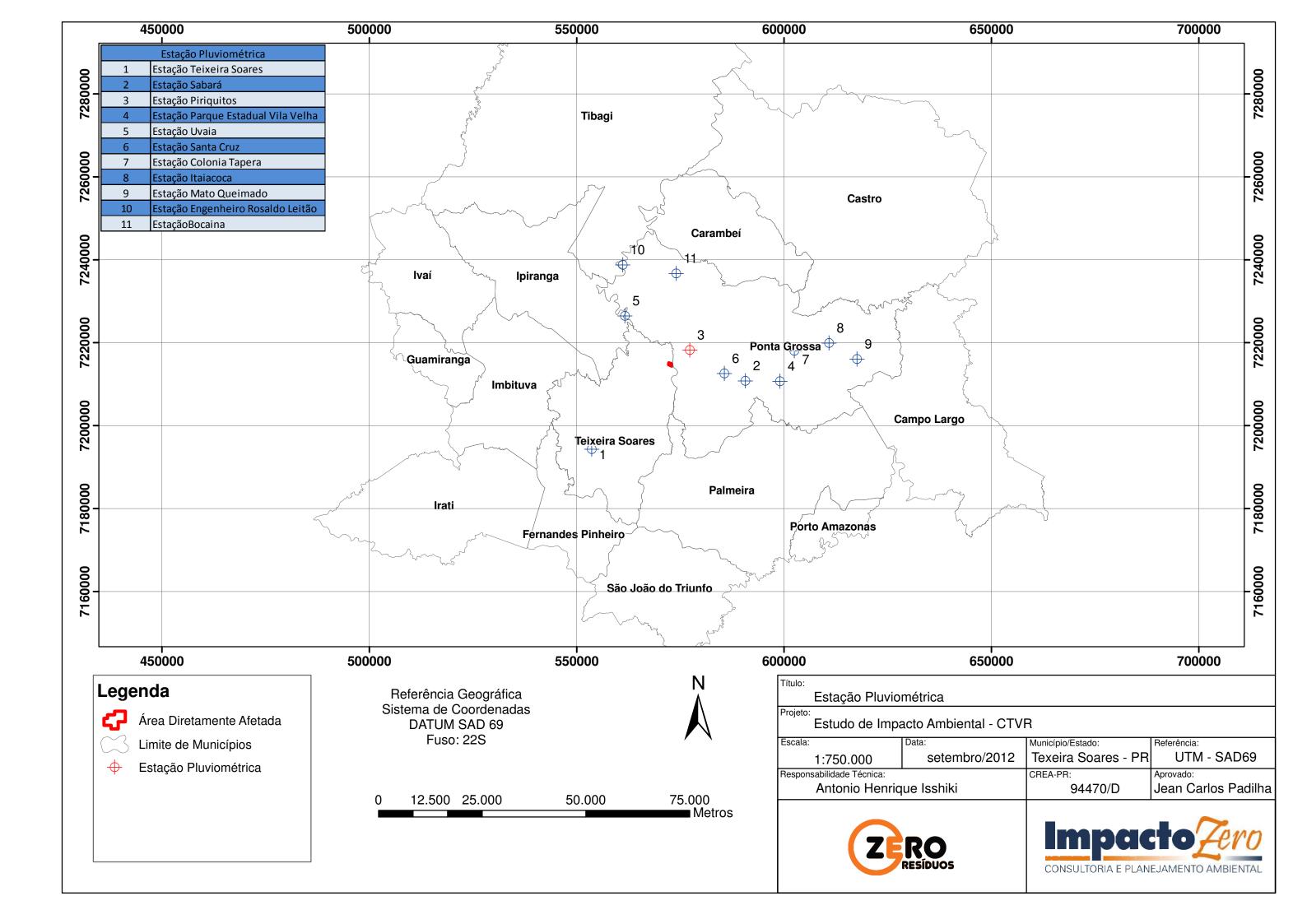












CERTIFICADO OFICIAL DE ANÁLISE Nº 299 / 12

SELAB - Serviço de Laboratório

Interessado:

Zero Residuos S/A

QUADRO RESUMO DOS ENSAIOS DA POROSIDADE EFETIVA DO SOLO

	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I		The second secon				REFERENCIAS
							>
			6				
2,5 YR 6 / 6 Vermelho Claro	7,24	45,53	52,77	42,04	1,55	Potreiro Grande Teixeira Soares - PR	PO 01 ZAE 602
*	Qef(% vol)	θ_{MICRO} (% vol)	total medida $ heta_S$ (% vol)	$\theta_{_C}$ (% vol)	PSS (g/cm³)	(LOCAL)	Laboratorio
Solo	Solo	Solo	Porosidade	de	do	amostra	Número de
do	do	do	Saturação=	Volumétrica	Específica	da	Amostra /
Cor	Porosidade Efetiva	Microporosidade	Umidade	Umidade	Massa	Localização	Número da

Methods of Soil Analysis: Part1-Physical and Mineralogical Methods (KLUTE, 1986) e Manual de Edafologia (KIEHL, 1979); Dinâmica da Água no Solo (LIBARDI, 1995). A umidade na saturação e/ou porosidade total da amostra foi determinada, após saturação completa e drenado gravitacional, conforme a altura do cilindro (5,3cm)

A tensão adotada para separar os macros dos microporos é de 80 cm;

O valor da porosidade efetiva é expresso em porcentagem de volume;

A porosidade total considerada foi medida após saturação por período de 12 horas;

As amostras utilizadas nos ensaios são indeformadas, coletadas com trado especial, com cilindros medindo 5,3 cm de altura x 4,8 cm de diâmetro

A macroporosidade é igual a porosidade efetiva

Manual comparativo de cores: MUNSELL SOIL COLOR CHARTS

Antônio Perdoná Alano

Chefe do Selab CREA 8728-2 /SC

CREA 250075743 - 9 Nac

Rua Máximo João Kopp, 274, bloco 3/M, Santa Cândida - Curitiba - PR, CEP 82630 - 900 Fone: 3351 - 6900 / 3267-3472 Obs: O presente laudo tem seu valor restrito somente a amostra em questão, respondendo o SELAB, apenas pela veracidade desta via

> Geólogo CREA 8220-D / PR Marcos Vitor Fabro Dias

> > Data: 24/05/2012

CREA 170171850 - 2 Nac

CERTIFICADO OFICIAL DE ANÁLISE Nº 300 / 12

SELAB - Serviço de Laboratório

Interessado: Local:

Zero Residuos S/A
Potreiro Grande Município de Teixeira Soares - PR

QUADRO RESUMO DOS ENSAIOS GEOTÉCNICOS

																					l	l			
Número da							3-29-300																		
Amostra /		Classe						Proctor	or			Absorção de Azul de Metileno	le Azul dı	Metileno			pH	pH do solo	Ĭ	Permea-	Erodibilidade	idade		Argilo	Cor
Número Sedimento	nento	Textural		Índi	Índice de campo	npo		Normal		T T	Ę.	CIC	-				è			bilidade			L	Mineral	*
brio											7	MEQ / 100g	SE m ² /g	n²/g	\$	Acb	em	em	A	cm/s	s	שי	(#I	:	
Ag	Si Ar	A	os s	ådc	ဇ	n	Sr	δdmx	wot		_	solo argila	la solo	argila		Q	água	KCL	pH	×		%		Y.W.C.	
%	%	0,	g/cm3	g/cm3		%	%	g/cm3	%						1								L		
SI - PE 01	-		1									_		yw.	9					4x10-4					10 YR 3/2
ZAE 603											_									0,000483cm/s				1.210	Marrom Escuro
SI - PE 02	+	1	1	7	7	1					4	-								1x10 ⁻³					2,5 YR 6/6
ZAE 604											_		A							0,001015cm/s					Vermelho Claro
SI - PE 03	+	1	7	7	7	1														1x10-6					5 YR 2,5 / I
ZAE 605																				0,000001cm/s					Preto
																			S. and the						
Ag - argila	gila								LL - lim	LL - limite de liquidez	uidez														
Si - silte Ar - areia 8s - massa	e eia issa esper	Si - silte Ar - areia Ss - massa específica dos sólidos	dos						CTC - c SE - suj	LP - limite de plasticidade CTC - capacidade de troca SE - superficie específica	asticida le de tre specifio	LP - limite de plasticidade CTC - capacidade de troca de cátions SE - superficie específica	S												
ôdc - m eo - ind	ôde - massa específic eo - índice de vazios	ôdc - massa específica seca de campo eo - índice de vazios	e campo						Vb - qui	antidade uantidade	de azul e de azu	Vb - quantidade de azul de metileno gasto em 100 g de solo Acb - quantidade de azul de metileno gasto em 100 g de argila	gasto en o gasto e	100 g de n 100 g d	solo e argila										
n - porosidade	osidade	*							S - indic	S - índice de adsorção	orção														
Sr - gra 8dmx - wot - m	Sr - grau de saturação Sdmx - massa específica wot - massa específica	Sr - grau de saturação ôdmx - massa específica aparente seca wot - massa específica aparente úmida	ente seca ite iimida						F - perd E - indic	P - perda por imersão E - índice de erodibilidade	ersão dibilida	ide													
	K-	K - Permeabilidade 1 - Elevada, Superior a 10 ⁻¹ , 2 - Média 10 ⁻² a 10 ⁻³ , 3 - Baixa 10 ⁻³ a 10 ⁻³ , 4 - Muito Baixa 10 ⁻⁵ a 10 ⁻⁷ , 5 - Praticamente Impermeável > 10 ⁻¹⁰	de 1 - Ek	evada, Si	iperior a	10-1, 2-1	Média 10	2 a 10 ⁻³ ,	3 - Baixa	a 10 ⁻³ a 1	0.3,4-	Muito Baix	10 ⁻⁵ a 10) ⁷ , 5- Pr	aticame	ate Impe	rmeável	> 10-10	7	0					
 Triángulo empregado para determinação das classes texturais simplificadas: USDA Argilo Mineral determinado via análise térmico-diférencial -ATD 	ira detem nado via	ninação das c análise térmi	lasses tex	turais sin	nplificad 'D	as: USD	1		Antônio	Antônio Perdoná Alano	ná Alan		1	1		10	Marc	Marcos Visor Fabro Dia	A Part	Ding	A			DATA: 24 / 05 / 2012	05 / 2012
*** - Manual comparativo de cores: MUNSELL SOIL COLOR CHARTS	de cores:	MUNSELL S	SOIL CO	LOR CH	ARTS		1		Chefe d	o Selab (CREA	Chefe do Selab CREA 8726-2/SC CREA 250075743-9 Nac	CREA 2	0075743	9 Nac	1	Geólo	BOCRE	A 8220	Geólogo CREA 8220-0 / PR CREA 170171850-2 Nac	7017185)-2 Nac			
Obs: O presente laudo tem seu valor restrito somente a amostra em questão, respondendo o SELAB, apenas pela veracidade desta via.	em seu	valor restrit	o some	ite a am	ostra er	n quest	io, resp	ondendo	o SEL	AB, ape	mas po	ela ver acid	ade dest	a via.		1	1		1						
Rua Máximo João Kopp, 274, bloco 3/M, Santa Cândida - Curitiba - PR, CEP 82630 - 900 Fone: 3351 - 6900 / 3267-3472	p, 274,	bloco 3/M,	Santa C	ândida	- Curitil	ba - PR,	CEP &	2630 - 9	00 Fond	e: 3351	- 6900) / 3267-34	172												

Cliente: Zeros Residuos S/A Obra: Edificação Industrial Local: Estrada José Kalinoski - Ponta Grossa - Teixera Soares **FUNDAÇÕES E SONDAGENS** Cota relação R.N. Prof. Camadas (m) Método cravação Nº 015/12 Relatório de Sondagem Revestimento Cota do N.A. N° de golpes penetração Índice SPT finais/30cm Amostras 30 cm finais Furo SP 01 Cota 0,00 30 cm iniciais SPT - Standart Penetration Test 10 20 30 40 Camadas - Classificação dos solos Argila silto arenosa marrom e solo orgânico 1 C 1,00 2 4 3 3 6 Argila silto arenosa marrom 5 10 15 4,00 12 16 28 -5 15 20 35 Silte argilo arenoso cor variegado 15 20 22 42 7,00 45 55 100 Silte cor variegado 8,00 ↑ Limite da sondagem -10 -15 encentrado N.A. -20 foi -25 -30 Profundidade nível d'agua Amostrador Revestimento Ø 2 3/8 " Data

1 3/8 "

2 "

Samuel Ricardo Gaioski

65,0

75,0

02/03/2012

Peso

Altura de queda

Inicio 23/02/2012

término 23/02/2012

Folha 01/04

Ø interno

Ø externo

Eng:

23/02/2012

23/02/2012

Obs: Não Houve nivel de Agua

Joel / Willian /Mauro

Inicial

Final

Sondador:

Cliente: Zeros Residuos S/A Obra: Edificação Industrial Local: Estrada José Kalinoski - Ponta Grossa - Teixera Soares **FUNDAÇÕES E SONDAGENS** Cota relação R.N. Prof. Camadas (m) Método cravação Nº 015/12 Relatório de Sondagem Revestimento Cota do N.A. N° de golpes penetração Índice SPT finais/30cm Amostras 30 cm finais Furo SP 02 Cota 0,00 30 cm iniciais SPT - Standart Penetration Test 10 20 30 40 Camadas - Classificação dos solos 1 C Argila silto arenosa marrom e solo orgânico 2 2,00 2 3 4 7 3 4 6 10 Argila silto arenosa marrom -5 5 6 11 5,00 5 7 9 16 10 12 22 Silte argilo arenoso cor variegado 10 12 22 10 15 27 12 9,00 30 -10 25 40 70 Silte cor variegado 10,00 ↑ Limite da sondagem -15 encentrado N.A. -20 foi -25

Profundidade nível d'agua Amostrador Revestimento Ø 2 3/8 " Data 25/02/2012 Ø interno 1 3/8 " 65,0 Inicio 25/02/2012 Inicial Peso kg término 25/02/2012 25/02/2012 Altura de queda 75,0 Final Ø externo 2 "

Obs: Não Houve nivel de Agua

-30

Sondador: Joel / Willian /Mauro Eng: Samuel Ricardo Gaioski 02/03/2012 Folha 02/04

HENNPMAN Flação R.N. I do N.A. I do N.A. I do N.A. I do N.A. Sp. Lação Sp. Lação Buardas (m) Rela Furce Furce

Cliente: Zeros Residuos S/A Obra: Edificação Industrial

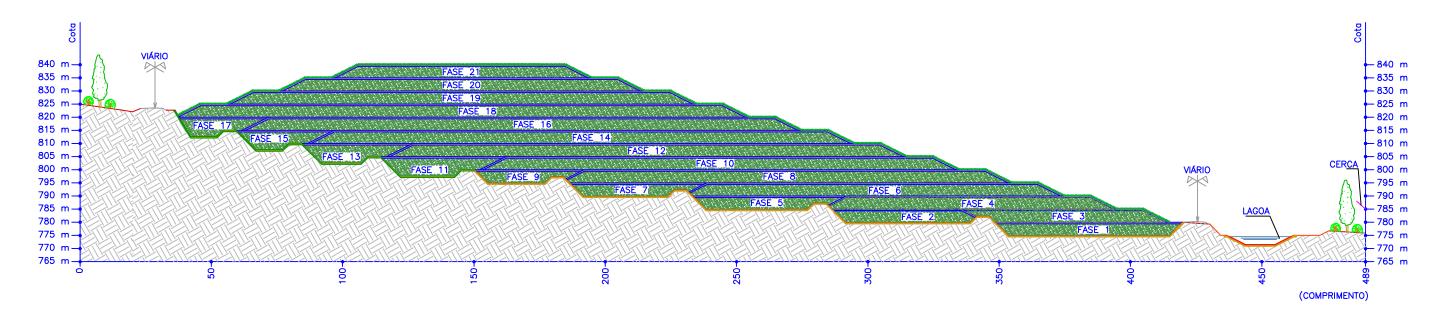
Local: Estrada José Kalinoski - Ponta Grossa - Teixera Soares

		FI	JNI	DAÇÕE	SES		IDA	GENS	i i	Local: Estrada Jo	osé Kalinoski	- 1 01112	i Giossa	- ICIAC	7 a 50	arcs	
nto	ação						Prof. Camadas (m)			le Sondagem	No	015/	12				
Revestimento	Método cravação	Cota relação R.N.	Cota do N.A.	N° de golpes / penetração	Índice SPT finais/30cm	Amostras	ımada	Fu	ro SP 03	Cota 0,0	0	_				finais iniciais	
Reve	létod	ota re	Cota	de g ineti	ndice	A	of. C			ndart Penetration Te			10 2		30	40	50
	Z	ŭ		o o N	h Ti	П	Pr			Classificação dos sol			+	+	+	-	
	TC				2	╟	1,00	Arg	ila silto areno	sa marrom e solo orgân	1100	\ <u>\</u>					
Ш		1		1 1 2	+	H											
Ш				2 2 2		╟		11.00				/	\				
		_ ا		3 4 5 4 5 5	-	H			Argila silt	o arenosa marrom		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
		-5				╟											
				6 6 8		H		33 33									
				8 8 1 10 10 1	_	┢	7,00			100000000000000000000000000000000000000			\				
				10 10 1 12 14 1	-	┢			C:14:1					11/			
		10			_	┢			Sine argii	o arenoso marrom	100						
-		-10		14 18 2 25 35 4	-	H	10,00	NAME OF TAXABLE PARTY.	c:	lte marrom	30.470.61				 		
				23 33 4	3 13	┢	11,00	STORY THE	31	ite mariom							
						H			↑ Li	mite da sondagem							
						┢											
		-15				H											
						H											
			A Z			m											
			ado			┢											
			Não foi encentrado N.A.			T											
		-20	enc			r											
			o foi			Т											
			Z			ľ											
						ľ											
		-25				Т											
						П											
						П											
		-30															
						П											
		-35															
	F	Profu	ndida	de nível d'ag	ua		An	nostrador		Revestimento Ø	2 3/8 "]	Data			
Inic				m 25/02/2				Ø interno	1 3/8 "	Peso	65,0 kg			nicio 25			
Fin		01	NT~	m 25/02/2			Ç	Ø externo	2 "	Altura de queda	75,0 cm		térn	nino 25	5/02/2	012	
Son	dado			Houve nivel / Willian /M		Ī	Eng:	Samu	el Ricardo C	faioski	0	2/03/20	12 F	olha 03	3/04		
JUII	auu	***	3001	, , , , , , , , , , , , , , , , , , , ,	uuiU		∟ng:	Samu	er recardo C	MIODKI	Ü.	_103120	12 1	oma U.	,, 0 1		

HENNIPMAN EUNDAÇÕES E SONDACENS

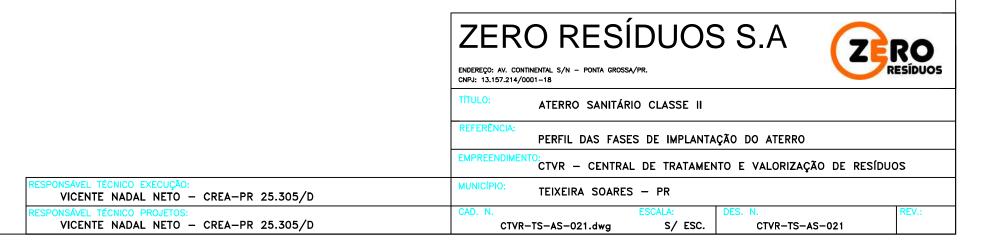
Cliente: Zeros Residuos S/A Obra: Edificação Industrial

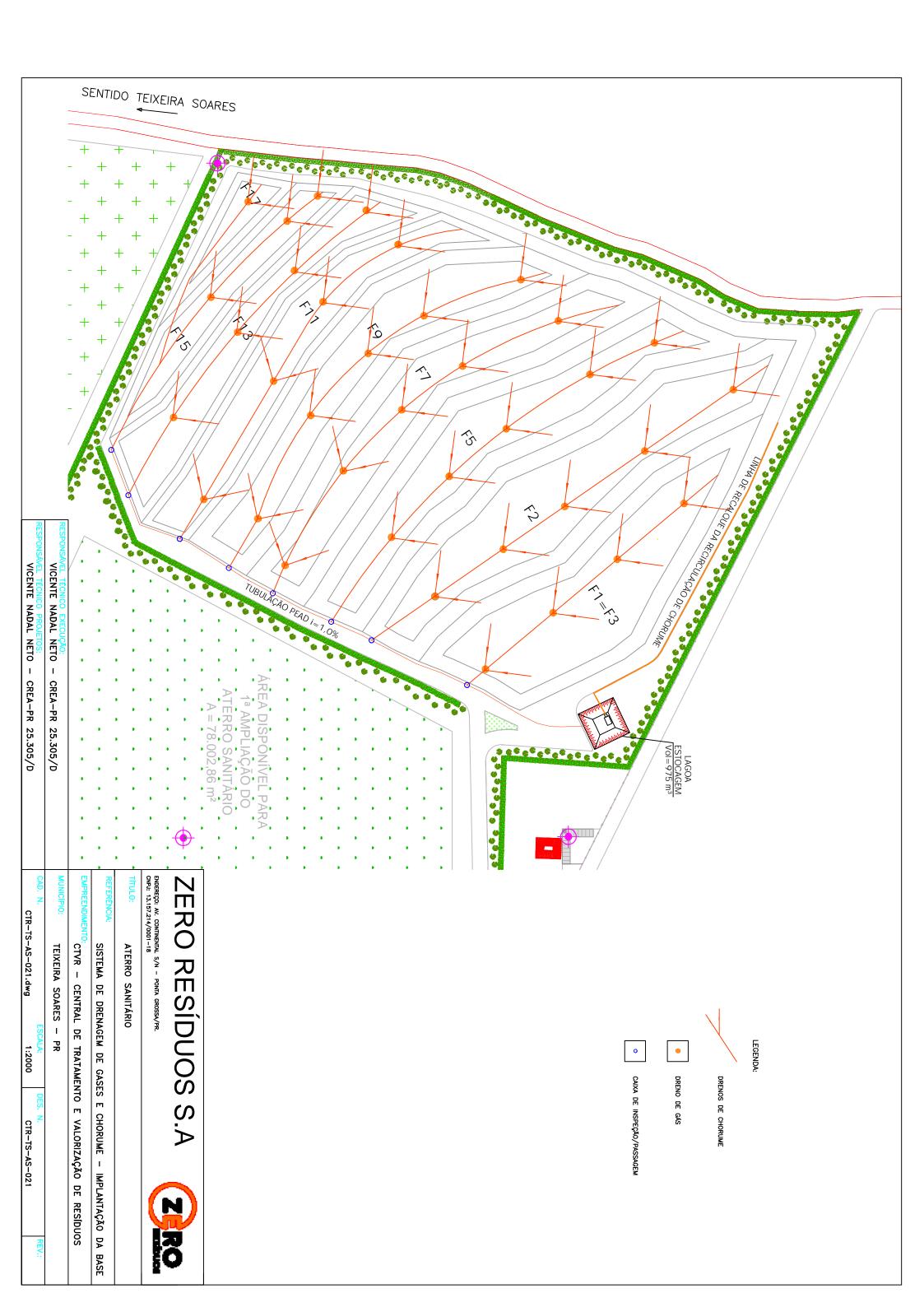
Local: Estrada José Kalinoski - Ponta Grossa - Teixera Soares

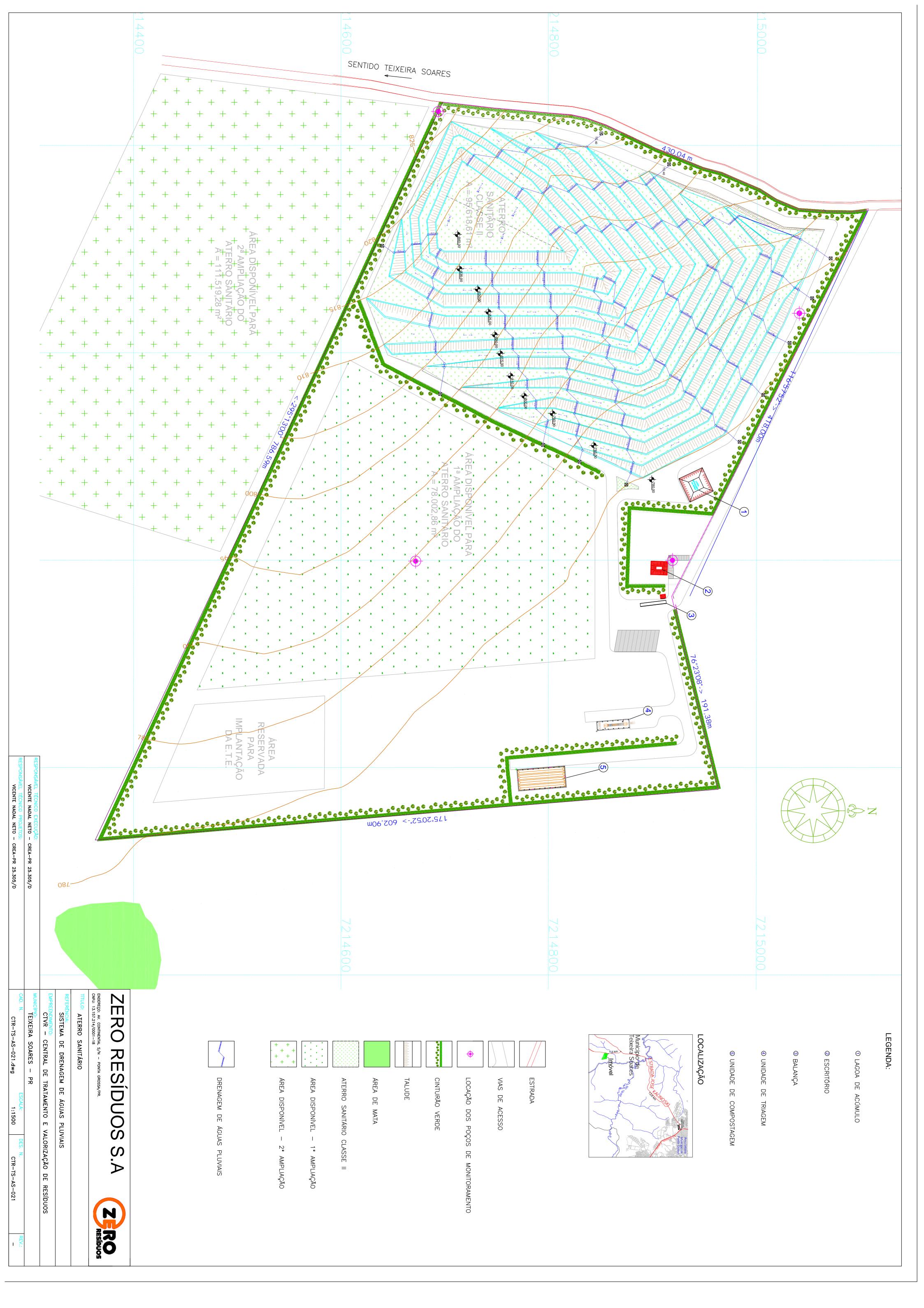

		1	ואנ	DAÇOES	SES				ii .		JSC Kalliloski				
nto	Método cravação	Cota relação R.N.	Α.	/ Si		S (Prof. Camadas (m)	Re	latório d	e Sondagem	N°	015/12			
Revestimento	o cra	lação	Cota do N.A.	N° de golpes / penetração	Índice SPT finais/30cm	Amostras	amada	Fu	ro SP 04	Cota 0,00	0				n finais i iniciais
Reve	létod	ota re	Cota	de g eneti	ndice nais/	All	je Si			ndart Penetration Tes		10	20	30	40 5
П				» N	lî fi	П		Ara		Classificação dos sol sa marrom e solo orgâni					
	TC			1 1 1	2	1.	,00	Aig	a sinto archos	a marrom e solo organi					
Ш				2 2 3	5	╉.			Argila silt	o arenosa marrom					
Г.				4 5 6	11	3.	,00		-						
		-5		5 5 5	10		,00		Silte argil	o arenoso marrom	1119				
				5 6 7	13		,00						/		
				7 8 8	16				Silte argilo a	renoso cor variegado			//		
				8 9 10	19				Sinc argino a	renoso cor variegado					
				10 12 15	27	9.	,00	3588			100				
		-10		22 40 50	90	_ 10	0,00		Silte	cor variegado	1446				
						₽			↑ Li	mite da sondagem					
						╀									
						₽									
		-15				╀									
_						┢									
			ď.			Ħ									
			ado			Ħ									
			encentrado			Ħ									
		-20													
			Não foi												
			ž												
						╙									
						╇									
		-25				₽									
						╀									
						₽									
						╀									
		-30				┢									
						█									
						Ħ									
						Ī									
		-35	_			\mathbb{L}									
		rofu	ndida	de nível d'agu				strador		Revestimento Ø	2 3/8 "		Data		
Inic				m 27/02/20 m 27/02/20				nterno	1 3/8 "	Peso	65,0 kg		Inicio término	27/02/	
Fin		Obs:	Não	m 27/02/20 Houve nivel of			Øе	Atemo	2 "	Altura de queda	75,0 cm		termino	211021	2012
Son	dado			/ Willian /Ma		Eı	ng:	Samu	el Ricardo G	aioski	0:	2/03/2012	Folha	04/04	
							J								

ZERO RESIDUOS S.A. CERO RESIDUOS S.A. CENTRALO E TRATAMENTO E VALORIZAÇÃO DE RESIDUOS - CTVR - TEIXEIRA SOARES/PR

ZERO


CRONOCRAMA FÍCICO FINANCTIRO DE IMPLANTAÇÃO


CRONOGRAMA FÍSICO FINANCEIRO DE IMPLANTAÇÃO Ponta Grossa, novembro de 2012																													K	ESIDUUS
Ponta Grossa, novembro de 2012	TOTAL RS	*	FASE	1 5	SF 2	FASE 3	FASE	4	FASE 5	FASE 6	FAS	E7 FASE 8	FΔ	SE 9 F	ASE 10	FASE 11	FASI	E 12	FASE 13	FASE 14	FAS	F 15	FASE 16	FAS	SF 17	FASE 18		FASE 19	FASE 20	FASE 21
			% EXEC 9	ACUM % EXEC	% ACUM % EX	EC % ACUM	% EXEC	% ACUM % EX	EC % ACUM	% EXEC % ACUM			JM %EXEC		% ACUM	% EXEC % ACUM	% EXEC	% ACUM	% EXEC % ACUM	% EXEC % ACUM	% EXEC	% ACUM	% EXEC % ACUM	% EXEC	% ACUM	% EXEC % A	ACUM % E	EXEC % ACUM	% EXEC % AC	UM % EXEC % ACUN
IMPLANTAÇÃO DA CENTRAL DE TRATAMENTO E VALORIZAÇÃO DE RES																												,		
Terraplenagem Umpeza e remoção de camada vegetal	nc 74 cm oc	0.61%	17.000	17.000	32.00%	33.00W		32.00% 15.		47.000	15.00%	62.00% 62		75.00%	77.000	10.00% 85.00%		er oou	8,00% 93,009	93.009		98.00%	98.009	2000	100.00%		00.000	100.000	100	00% 100.00
1.1 Empera e remoçato de camada vegetal 1.2 Escay carga e transporte 18 categ - DMT 500m	RS 2 578 916 99		15,00%	15 42% 17 619	22 04%	22.04%	+	33,04% 15	29% 48 33%	47,007	13,00%	61 67% 61	57% 12.62%	74 79%	74 29%	9.60% 83.89%		83,89%	852% 92419	27,415	5 35%	97.76%	97.769	2 24%	100.00%	~~~~ \	00,00%	100,00%		000
Escav carga e transporte 1º categ - DMT 500m Regulariz e compactação sub-leito 100% PN - e=60cm					45,00%	45,00%	·	45,00% 10,	00% \$5,00%	55,009	10,00%	65,00% 65	10,00%	75,00%	75,00%	10,00% 85,00%	i	85,00%	7,50% 92,509	92,509	5,00%	97,50%	97,50%	2,50%	100,00%	10	00,00%	100,00%	100	,00% 100,00
Regulariz e compactação sub-leito 100% PN - e=60cm Area de Impermeabilização Sintética Geotestil de 400 g/m2	RS 908 797 61				1												1::::::				1			1	T1					00% 100.00
2.1 Geotextil de 400 g/m2	R\$ 908.797,61	7,39%	19,00%	19,00% 15,509	6 34,50%	34,50%	h	34,50% 13,	25% 47,75%	47,759	11,75%	59,50% 59 59,50% 59	50% 9,13%	68,63%	68,63%	8,88% 77,51%		77,51%	7,49% 85,009	85,009 85,009	6,25% 6,25%	91,25%	91,25% 91,25%	8,75%	100,00%	10	00,00%	100,00%	100	,00% 100,00 ,00% 100,00
2.1 Georgetti de 400 g/m2 2.2 Georgembrana PEAD e=2,0mm 3. Drenagem de Líquidos Percolados (Fundo) 3.1 Georgetti de 600 g/m2			19,00%	19,00% 15,509	34,50%	34,50%	 	34,50% 13,	25% 47,75%	47,/57	11,/5%	59,50%	9,13%	68,63%	68,63%	8,88% //,50%		//,50%	7,50% 85,007	85,007	6,25%	91,25%	91,258	8,/5%	100,00%		00,00%	100,00%		30%
3.1 Geotextil de 600 g/m2	R\$ 139.641,03	1.14%	3,00%	3,00% 3,689	6 6,68% 3,	30% 9,98%	6,61%	16,59% 3,	02% 19,61%	9,06% 28,679	2,60%	31,27% 11,52% 42	79% 2,52%	45,31% 13,23	% 58,54%	2,10% 60,64%	9,79%	70,43%	1,85% 72,289	8,99% 81,279	1,12%	82,39%	7,30% 89,69%	0,42%	90,11%	4,95% 5	95,06%	2,34% 97,40%	1,40% 98	80% 1,20% 100,00
3.2 Areia grossa	R\$ 67.382,96	0,55%	3,00%	3,00% 3,689	6 6,68% 3,	30% 9,98%	6,61%	16,59% 3,	02% 19,61%	9,06% 28,679	2,60%	31,27% 11,52% 42	79% 2,52%	45,31% 13,23	% 58,54%	2,10% 60,64%	9,79%	70,43%	1,85% 72,289	8,99% 81,279	1,12%	82,39%	7,30% 89,69%	0,42%	90,11%	4,95% S	95,06%	2,34% 97,40%	1,40% 98	80% 1,20% 100,00 80% 1,20% 100,00
3.2 Areia grossa 3.3 Brita 4 3.4 Tubo dreno PEAD 150mm	R\$ 209.709,46	1,70%	3,00%	3,00% 3,689	6 6,68% 3,	30% 9,98%	6,61%	16,59% 3,	02% 19,61%	9,06% 28,679	2,60%	31,27% 11,52% 42	79% 2,52%	45,31% 13,23	% 58,54%	2,10% 60,64%	9,79%	70,43%	1,85% 72,289	8,99% 81,279 8,99% 81,279	1,12%	82,39%	7,30% 89,69% 7,30% 89,69%	6 0,42% 6 0,42%	90,11%	4,95% 9	95,06%	2,34% 97,40%	1,40% 98	80% 1,20% 100,00 80% 1,20% 100,00
3.4 Tubo dreno PEAU 150mm 4 Drenneem de Unidos Berrolados (Laterais)	K\$ 205.358,20	1,67%	3,00%	3,00% 3,687	1,000	30% 9,98%	6,61%	16,59% 3,	19,61%	9,06% 28,677	2,60%	31,2/% 11,52% 42	<u> </u>	45,31% 13,23	38,34%	2,10% 60,64%	9,79%	/0,45%	1,85% /2,287	8,39% 81,277	1,12%	82,59%	7,5076	0,42%	90,11%	4,95%	95,06%	2,34% 97,40%	1,40% -98	30% 1,20% 100,00
Drenagem de Liquidos Percolados (Laterais) Geocomposto drenante	RS 392,579.09	3.19%	3.00%	3,00% 4,009	7,00%	30% 10.30%	7.00%	17.30% 4.	00% 21.30%	9,70% 31,009	3.00%	34.00% 10.00% 44	3,00%	47,00% 13,00	% 60.00%	2.00% 62.00%	10.00%	72.00%	2.00% 74.009	9.00% 83.009	1.00%	84,00%	6,00% 90,00%	1.00%	91.00%	5.00% 5	96.00%	2.00% 98.00%	1.00% 99	00% 1,00% 100,00
S. Sistema de Capitação de Liquidos Percolados S. 1 Tubulações PEAD D200mm							1								- 1 1 1 -		1			1										
	RS 109.725,00		30,00%	30,00% 10,009	40,00%			40,00% 10,	30,00%					70,00%	70,00%	10,00% 80,00%		80,00%	10,00% 90,009	90,009	5,00%	95,00%	95,009	5,00%		10		100,00%	100	
5.2 Caixas de reunião e passagem	R\$ 26.166,00	0,21%	30,00%	30,00% 10,009	40,00%	40,00%	4	40,00% 10,	00% 50,00%	50,009	10,00%	60,00% 60	10,00%	70,00%	70,00%	10,00% 80,00%	4	80,00%	10,00% 90,009	90,009	5,00%	95,00%	95,009	5,00%	100,00%	10	00,00%	100,00%	100	.00% 100,00
Drenagem de Aguas Pluviais 1/2 canas de concreto - 400mm 7 Tubulação de concreto - 600mm	RS 71.636.58	0.58%	20.00%	20.00% 5.009	25,000	00% 20.00%		5 00% 10	00% 15.00%	10,00% 25,00%	5.00%	20.00% 5.00% 25	10,00%	45,00% 10,00	oc 55 00%	55 00%	10.00%	65 00%	5 00% 70 00%	10.00% 80.009	10.00%	90,00%	10,00% 100,009	d	100.00%		00.00%	100,00%	100	00%
6.2 Tubulação de concreto - 600mm	RS 75.605.78	0.61%	20,00%	20,00% 5,009	25.00% 5	00% 30,00%	}	5,00% 10,	00% 15,00%		5,00%	20.00% 10.00% 30	00% 10,00%	40.00% 5.00	% 45.00%	45.00%	5.00%	50,00%	50.009	10,00% 60,009	10,00%	70,00%	10,00% 80,00%	5,00%	85.00%	5.00% 5	90.00%	5.00% 95.00%	5.00% 100	00,001 00,00
	R\$ 50.028,87	0,41%	20,00%	20,00% 5,009	6 25,00% 5,	00% 30,00%		5,00% 10,	00% 15,00%	15,009	5,00%	20,00% 10,00% 30	00% 10,00%	40,00% 5,00	% 45,00%	45,00%	5,00%	50,00%	50,009	10,00% 60,009	10,00%	70,00%	10,00% 80,00%	5,00%	85,00%	5,00% 5	90,00%	5,00% 95,00%	5,00% 100	,00% 100,00
6.4 Caixas de dissipação de energia	R\$ 61.363,37	0,50%	100,00%	100,00%	100,00%	100,00%	1	100,00%	100,00%	100,009	41		00%	100,00%	100,00%	100,00%		100,00%	100,009	100,009	6	100,00%	100,009	6	100,00%	10	00,00%	100,00%	100	00% 100,00
7. Monitoramento/Controle Geotécnico 7.1 Pocos de Monitoramento										ļ				 										J	+					
7.1 Poços de Monitoramento 9 Largo de Acrimula de Houido Percolado	K\$ 18.100,00				100,00%	100,00%	i	100,00%	100,00%	100,009		100,00%	JU%	100,00%	100,00%	100,00%		100,00%	100,009	100,009	1	100,00%	100,00%	٠	100,00%		00,00%	100,00%	100	30% 100,00
8. Lagoa de Acúmulo de Liquido Percolado 8.1 Lagoa com geomembrana PEAD 1,5mm	R\$ 43.824,00 R\$ 72.140,00	0.36%	100.00%	100.00%	100.00%	100.00%	-	100.00%	100,00%	100.009		100.00% 100	00%	100.00%	100.00%	100.00%	d	100.00%	100.009	100.009	J	100.00%	100,009	d	100.00%	10	00.00%	100.00%	100	00% 100.00
Lagos com geomemorana PEAU 1,5mm S. Z. Sistema de recirculação de liquido percolado S.3. Sistema de recirculação de liquido percolado	R\$ 72.140,00	0,59%	40,00%	40,00%	40,00% 5,	00% 45,00%	·	45,00% 5,	00% 50,00%	50,009	5,00%	100,00% 100 55,00% 55 55,00% 55	5,00%	60,00% 5,00	% 65,00%	65,00%	5,00%	70,00%	5,00% 75,009	75,009	5,00%	80,00%	80,009	10,00%	90,00%			5,00% 95,00%	5,00% 100	,00% 100,00
8.3 Sistema de recirculação de líquido percolado	R\$ 72.140,00	0,59%	40,00%	40,00%	40,00% 5)	00% 45,00%		45,00% 5,	00% 50,00%	50,009	5,00%	55,00% 55	00% 5,00%	60,00% 5,00	% 65,00%	65,00%	5,00%	70,00%	5,00% 75,009	75,009	5,00%	80,00%	80,009	10,00%	90,00%		90,00%	5,00% 95,00%	5,00% 100	DO% 100,00°
9. Acessos internos 9.1 Abertura estradas internas - corte	RS 164 244 11	1.240	FARRY	FO CON	10.000 F	now er one	d	55,00% 5		60.000	5,00%	65 00% 65	00% 5,00%	70.000	70.00%	F 00W 3F 00W		27 00V	F 000 80 000	80.000	F 000	85,00%	85,009		00.000		00.000	roow or oow	5 00% 100	00% 100.00
9.2 Abertura estradas internas - otrer	RS 107.932.45	0.88%	50,00%	50,00%	50,00% 5	00% 55,00%	 	55,00% 5	00% 60,00%	60,009	5,00%	65.00% 65	00% 5,00% 00% 5,00%	70,00%	70,00%	5,00% 75,00%		75,00%	5,00% 80,007	80,009	5,00%	85,00%	85,009	5,00%	90,00%		90,00%	5.00% 95.00%	5,00% 100	00% 100,00
	~	~~~	FARRY		50,00% S,	00% 55,00%	·	55,00% 5,	00% 60,00%	60,009	5,00%	65,00% 65	00% 5,00%	70,00%	70,00%	5,00% 75,00%		75,00%	5,00% 80,009	80,009	5,00%	85,00%	85,009	5,00%	90,00%			5,00% 95,00%	5,00% 100	00%
9.4 Revestimento primário (cascalho) estrada interna	R\$ 173.540,95	1,41%	50,00%	50,00%	50,00% 5,	00% 55,00%	1000001	55,00% 5,	00% 60,00%	60,009	5,00%	65,00% 65	3,00%	70,00%	70,00%	5,00% 75,00%		75,00%	5,00% 80,009	80,009	5,00%	85,00%	85,009	5,00%	90,00%		90,00%	5,00% 95,00%	5,00% 100	00% 100,00 ,00% 100,00 ,00% 100,00
9.5 Tubulação de concreto - 600mm	R\$ 26.086,33	0,21%	50,00%	50,00%		00% 55,00%		55,00% 5, 55,00% 5	00% 60,00%	60,009	5,00%	65,00% 65 65,00% 65	00% 5,00% 00% 5,00%	70,00%	70,00%	5,00% 75,00% 5,00% 75,00%		75,00%	5,00% 80,009	80,009	5,00%	85,00% 85,00%	85,009 85,009	5,00%	90,00%			5,00% 95,00% 5,00% 95,00%	5,00% 100 5,00% 100	.00% 100,00
9.6 Caixas de passagem (desvids)	K\$ 38.630,69	0,31%	50,00%	50,00%	50,00% 5)	UU% 55,UU%	4	55,00% 5,	00,00%	60,009	5,00%	65,00% 65	3,00%	70,00%	70,00%	5,00% /5,00%		75,00%	5,00% 80,009	80,007	5,00%	85,00%	85,000	5,00%	90,00%		90,00%	5,00% 95,00%	5,00% 100	
Separation of the separat	RS 42,300.00	0.34%	100.00%	100.00%	100.00%	100.00%	d	100.00%	100,00%	100.009	d	100.00% 100	00%	100.00%	100.00%	100.00%		100.00%	100.009	100.009		100.00%	100,009		100.00%	10	00.00%	100.00%	100	00% 100.00
		0,35%	100,00%	100,00%	100,00%	100,00%		100,00%	100,00%	100,009		100,00% 100		100,00%	100,00%	100,00%	h	100,00%	100,009	100,009		100,00%	100,009		100,00%	10	00,00%	100,00%	100	
10.3 Rede de distribuição interna 11. Cinturão verde 11.1 Mudas de Eucalipto e Sansão do Campo	R\$ 137.966,75	1,12%	75,00%	75,00% 10,009	85,00%	85,00%		85,00% 5,	200,00%	90,009	5,00%	95,00% 95	00% 5,00%	100,00%	100,00%	100,00%		100,00%	100,009	100,009		100,00%	100,009		100,00%	10	00,00%	100,00%	100	.00% 100,00
11. Cinturão verde																	l				J									
11.1 Modas de Edicalipio e Sansad do Campo 11.2 Cercamento da área c/ cerca (7 fios)	RS 89 147 75	0,40%	100,00%	100,00%	100,00%	100,00%	}	100,00%	100,00%	100,009		100,00% 100	00%	100,00%		100,00%		100,00%	100,009	100,009		100,00%	100,00%	å	100,00%	10	00,00%	100,00%	100	00% 100,00
11.1 Modas de eccampo e sansado do Campo 11.2 Cercamento da área c/ cerca (7 flos) 12. Prédios							†···					100,007								1		100,007								
12.1 Prédio administrativo	R\$ 319.500,00 R\$ 348.700.00	2,60%	100,00%	100,00%	100,00%	100,00%	1	100,00%	100,00%	100,009		100 00%	00%	100,00%	100,00%	100,00%		100,00%	100,009	100,009	6	100,00%	100,009	6	100 00%	10	00,00%	100,00%	100	.00% 100,00 .00% 100,00 .00% 100,00
12.2 Sistema de triagem de residuos (prédio + equipamentos)				100,00%	100,00%	100,00%	1	100,00%	100,00%	100,009	1	100,00% 100	00%	100,00%	100,00%	100,00%		100,00%	100,009	100,009	6	100,00%	100,00%	6	100,00%	10	00,00%	100,00%	100	00% 100,00
12.3 Pátio de compostagem	R\$ 49.600,00	0,40%	100,00%	100,00%	100,00%							100,00% 100				100,00%		100,00%	100,009	100,009		100,00%	100,009	6	100,00%	10		100,00%	100	00% 100,00
12.4 Portaria e Balança Rodoviária 80Ton - instal + constr civil	R\$ 155.000,00	1,26%	100,00%	100,00%						100,009		100,00% 100	00%	100,00%		100,00%		100,00%	100,009	100,009		100,00%	100,00%		100,00%	10		100,00%	100	
12.3 Pátio de compostagem 12.4 Portaria e Balança Rodoviária 801on - Instal + constrcivil 13 Sistema de Tratamento de Líquidos Percolados 13.1 Fisico-químico	RS 1 592 000 00	12 94%		0.00%	0.00%	0.00%	 	0.00%	0.00%	100,00% 100,00%	J	100 00%	998	100,00%	100,00%	100,009		100.00%	100,000	100,009		100.00%	100,009		100.00%		00.00%	100.00%		00% 100.00
13.2 Lagoas de 975m3 com geomembrana PEAD 1.5mm	RS 43.824.00	0.36%	····	0.00%	0.00%	0.00%	 -	0.00%	0,00%	100,00% 100,009		100 00%	20%	100,00%	100,00%	100,00%		100,00%	100.009	100,007		100,00%		; 	100.00%		00.00%	100,00%		22
13.1 Pitto-quimto 13.2 Ligosa de 976m3 com geomembrans PEAD 15mm 13.3 Umpera e remodo de camada vegetal 13.4 Escur carga e tramporte y l'ostige 10M1 500m 13.5 Alema Compactado d' Controle de Compactação 100RPN 13.5 Alema Compactado d' Controle de Compactação 100RPN 13.6 Contrigição del de bases, Lanques e deflectade.	R\$ 21.128,82	0,17%		0,00%	0,00%	0,00%		0,00%	0,00%	100,00% 100,009		100,00% 100	00%	100,00%	100,00%	100,00%	4	100,00%	100,009	100,009	4	100,00%	100,009	6	100,00%	10	00,00%	100,00%	100	00% 100,00
13.4 Escav carga e transporte 1º categ - DMT 500m	R\$ 30.150,72	0,25%		0,00%	0,00%	0,00%		0,00%	0,00%	100,00% 100,009 100,00% 100,009		100,00% 100 100,00% 100	00%	100,00%	100,00%	100,00%	1	100,00%	100,009	100,009		100,00%	100,009	4	100,00% 100,00% 100,00%	10	00,00%	100,00%	100	,00% 100,00 ,00% 100,00
13.5 Aterro Compactado c/ Controle de Compactação 100%PN	RS 66.732,48	0,54%		0,00%				0,00%	0.00%	100,00% 100,00%		100 00%	20%	100,00%	100.00%	100,00%		100,00%	100,009	100,000		100.00%	100,009		100,00%			100,00%	100	00% 100.00
13.0 Construção Civil de bases, taliques e edificações	330.000,00	-7,-776	• • • • • • • • •	0,00%	0,00%	0,00%	 	0,000	0,00%	100,00% 100,007	4	100,00%		100,00%	100,00%	100,00%		200,00%	100,007	100,007	• • • • • • •	100,00%	100,00%	:	100,00%		00,00076	100,00%		100,00
			FASE	1 F,	SE 2	FASE 3	FASE	4	FASE 5	FASE 6	FAS	E7 FASE 8	FA	SE 9 F.	ASE 10	FASE 11	FASI	E 12	FASE 13	FASE 14	FASI	E 15	FASE 16	FAS	E 17	FASE 18		FASE 19	FASE 20	FASE 21
			% EXEC 9	ACUM % EXEC	% ACUM % EX	EC % ACUM	% EXEC	% ACUM % EX	EC % ACUM	% EXEC % ACUM	% EXEC	% ACUM % EXEC % AC	JM % EXEC	% ACUM % EXEC	% ACUM	% EXEC	% EXEC	% ACUM	% EXEC % ACUM	% EXEC % ACUM	% EXEC	% ACUM	% EXEC % ACUM	% EXEC	% ACUM	% EXEC % A	ACUM % E	EXEC %ACUM	% EXEC % AC	
VALOR DA IMPLANTAÇÃO TOT				23,93% 9,719	6 33,64% 0,	64% 34,28%	0,56%	34,44% 8,	28% 42,72%	19,55% 62,279	7,32%	69,60% 1,03% 70	6,51%	77,14% 1,25	% 78,39%	5,46% 83,86%	0,98%	84,84%	4,81% 89,659	0,90% 90,559	3,69%	94,24%	0,72% 94,96%	3,51%	98,47%	0,46% 9		0,53% 99,46%	0,45% 99	
VALORET ACTIVAL	VALOR POR FASE DE IMP	LANTAÇÃO	R\$ 2.943	.998,95 R\$ 1	.194.520,66 R\$	79.322,46	R\$ 6	8.600,79 R\$	1.018.565,59	R\$ 2.405.441,35	RS 9	00.903,69 R\$ 127.06	,16 R\$:	801.057,73 R\$	153.997,40	R\$ 672.066,20	R\$ 1	120.820,07	R\$ 592.066,96	R\$ 110.985,28	RS 4	153.541,21	R\$ 88.694,56	R\$ 4	432.429,41	R\$ 56.7	704,22 R\$	64.665,02	R\$ 54.89	1,57 R\$ 11.390,8
VALUKES ACUMU	JUNUUS FUN FASE DE IMF	MINIALAU	np 2.943	.220,22 K) 4	.130.317,61 K)	4.217.842,07	no 4.23	r.123,03 K)	3.233.690,65	np 7.661.132,00	N) 8.5	02.033,70 np 8.689.10	,00 R3 9.4	+50.101,55 K\$	9.044.158,99	no 10.516.225,19	no 10.4	457.045,26	no 11.029.112,22	no 11.140.097,50	no 11.5	23.036,/1	no 11.682.333,27	no 12.1	114.762,68	no 12.1/1.4	100,3U K)	12.236.131,92	R\$ 12.291.02	,42 No 12.502.414,3



PERFIL DO TERRENO - CORTE TRANSVERSAL

ESCALA = 1:1500

ESTUDO DE ANÁLISE DE RISCO – EAR

ÍNDICE

1. INTRODUÇÃO	1
2. DESCRIÇÃO DAS INSTALAÇÕES E DA REGIÃO	3
2.1. Aterro Sanitário	3
2.1.1. Resíduos Sólidos Admitidos no Aterro Sanitário	5
2.1.2. Controle da Admissão de Resíduos Sólidos no Aterro	5
2.2. Unidade de Triagem	6
2.3. Unidade de Compostagem de Resíduos Orgânicos	8
2.4. Localização das Estruturas da CTVR	13
2.5. Características da região	14
2.5.1. Características Climáticas e Meteorológicas	15
3. CARACTERÍSTICAS DOS PRODUTOS ENVOLVIDOS	18
3.1. Composição das Emissões do Aterro Sanitário	18
3.1. Substâncias Inflamáveis	20
3.2. Substâncias Tóxicas	21
3.3. Considerações Acerca das Substâncias Movimentadas na CTVR	21
3.3.1. Materiais de Consumo	21
3.3.2. Emissões CTVR	22
4. IDENTIFICAÇÃO DE PERIGOS	31
4.1 Introdução	31
4.2. Metodologia	31
5. ANÁLISE DE CONSEQUÊNCIAS	38
5.1. Introdução	38

	5.2. Metodologia para o Cálculo da Distância Segura	38
	5.3. Considerações Finais	39
6.	ESTIMATIVA E AVALIAÇÃO DOS RISCOS	42
	6.1. Introdução	42
	6.2. Risco Social	42
	6.2.1. Conceito	42
	6.2.2. Resultados do Risco Social	42
	6.3. Risco Individual	42
	6.3.1. Conceito	42
	6.3.2. Critério de Tolerabilidade – Risco Individual	43
	6.3.3. Resultados do Risco Individual	43
	6.4. Resultados Obtidos	44
7.	CONCLUSÕES E RECOMENDAÇÕES	46
8.	REFERÊNCIAS BIBLIOGRÁFICAS	47
9.	EQUIPE TÉCNICA	48

1. INTRODUÇÃO

O presente trabalho contempla o Estudo de Análise de Riscos (EAR) das instalações da Central de Tratamento e Valorização de Resíduos - CTVR a ser instalada no município de Teixeira Soares, no Estado do Paraná.

O estudo tem por finalidade identificar, analisar e avaliar os eventuais riscos impostos ao meio ambiente e à comunidade circunvizinhos às instalações, decorrentes das atividades de recebimento, tratamento, valorização e disposição final de resíduos sólidos Classe IIA (não-inertes).

As etapas do trabalho podem ser resumidas conforme segue:

- a. Caracterização da instalação e da região de interesse;
- b. Identificação dos perigos e definição das hipóteses e cenários acidentais que eventualmente possam vir a ocorrer nas instalações;
- c. Estimativa e avaliação das consequências e seus respectivos efeitos físicos, decorrentes de eventos anormais que possam resultar em vazamentos, incêndios ou explosões;
- d. Determinação das áreas vulneráveis decorrentes dos diferentes impactos originados pelos efeitos físicos de cada um dos cenários de acidentes;
- e. Estimativa dos riscos impostos às pessoas situadas fora dos limites da empresa, expressos em termos de Risco Social e Risco Individual:
- f. Avaliação dos riscos e proposição de medidas mitigadoras e de gerenciamento

O estudo apresentado neste relatório baseou-se na Norma P4.261/2003 - Manual de Orientação para a Elaboração de Estudos de Análise de Riscos, da Companhia de Tecnologia de Saneamento Ambiental (CETESB), cuja sequência de etapas pode ser observada na Figura 01.

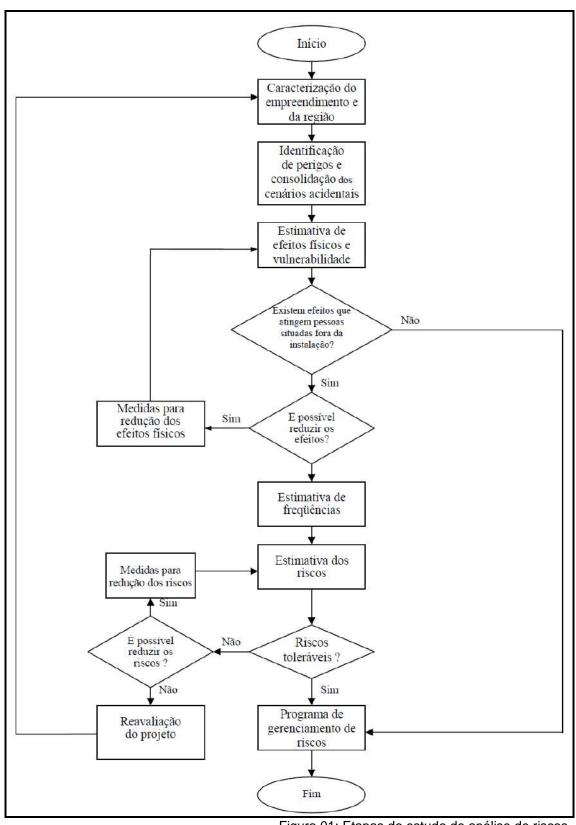


Figura 01: Etapas do estudo de análise de riscos. Fonte: CETESB.

2. DESCRIÇÃO DAS INSTALAÇÕES E DA REGIÃO

O objeto de licenciamento do presente Estudo de Análise de Riscos – EAR refere-se à implantação de uma Central de Tratamento e Valorização de Resíduos - CTVR a ser instalada sob a responsabilidade da empresa ZERO RESÍDUOS S/A. Segue abaixo a Tabela 01, com os dados cadastrais do empreendimento.

Tabela 01: Central de Tratamento e Valorização de Resíduos (CTVR).

DADOS	DESCRIÇÃO
Nome:	Central de Tratamento e Valorização de Resíduos
Localização:	Fazenda Sagrada Família
Cidade – UF:	Teixeira Soares – PR
Coordenadas UTM:	N 572245 / L 7215092
Identificação da Bacia Hidrográfica:	Bacia do Tibagi

Fonte: Zero Resíduos, 2012

A CTVR será constituída pelas seguintes Unidades:

2.1. Aterro Sanitário

O Aterro Sanitário é um método de disposição final de resíduos sólidos fundamentado em princípios básicos de engenharia, normas técnicas e operacionais específicas, a fim de acomodar os resíduos sólidos compactados, sem causar danos ao meio ambiente ou à saúde pública. De acordo com uma definição clássica, é um local destinado ao aterramento de resíduos, previamente preparado com sistemas de impermeabilização de base e das laterais, de drenagens de líquidos percolados (chorume), de águas pluviais e de gases.

O Aterro Sanitário será provido de todos os elementos de proteção ambiental, dentre os quais:

Sistema de impermeabilização com polietileno de alta densidade PEAD, com espessura de 2,00 mm na base (no fundo de

escavação) e das laterais (taludes internos da escavação) da área de disposição final dos resíduos sólidos;

- Sistema de cobertura diária dos resíduos (cobertura operacional) e cobertura definitiva (no encerramento de células e camadas de resíduos);
- Sistema de drenagem de chorume e elementos do sistema de captação e coleta de gases;
- Sistema de recirculação de chorume;
- Estação de tratamento de efluentes líquidos percolados (será instalada após o inicio da operação do aterro);
- Controle de emissões atmosféricas e odores;
- Sistema de drenagem superficial para águas pluviais; e
- Poços para o monitoramento das águas subterrâneas.

Todos estes sistemas de proteção ambiental, associados ao Aterro Sanitário, visam garantir um adequado desempenho operacional, gerando o menor impacto ambiental possível para a área de instalação do empreendimento e para a região do entorno.

A concepção do Aterro preconizado obedecerá rigorosamente todas as técnicas de engenharia para tal atividade, bem como todas as normas vigentes, dentre as quais merecem destaque:

- NBR 8419/92 da ABNT Apresentação de projetos de aterros sanitários de resíduos sólidos urbanos; e
- NBR 13896/97 da ABNT Aterros de resíduos não perigosos –
 Critérios para projeto, implantação e operação Procedimento.

2.1.1. Resíduos Sólidos Admitidos no Aterro Sanitário

O Aterro Sanitário foi projetado para receber resíduos sólidos recolhidos pelos serviços municipais de coleta regular (resíduos domiciliares e comerciais), aqueles provenientes da varrição de logradouros públicos, resíduos produzidos por grandes estabelecimentos comerciais (como supermercados, shopping centers, lojas de departamento, etc), bem como resíduos não-perigosos gerados em indústrias. Esses resíduos são considerados não-perigosos e não-inertes, Classe II A, segundo a norma NBR 10004/04 "Resíduos Sólidos – Classificação" da ABNT.

Com uma capacidade de recebimento de 376 t/dia, o Aterro Sanitário poderá prestar serviço para as Regiões dos Campos Gerais e Centro Sul do Estado do Paraná, com condições de dispor os resíduos de diversos geradores (públicos e privados), de forma tecnicamente eficiente e ambientalmente segura. Nesse sentido, sua implantação e operação trarão benefícios à região onde o empreendimento atuará, considerando seu caráter de utilidade pública junto à população.

A operação do Aterro Sanitário do desempenhará importante papel na questão do gerenciamento dos resíduos sólidos gerados nas municipalidades que, possivelmente, serão atendidas, beneficiando todo o respectivo contingente populacional como um instrumento fundamental de saneamento básico. Lembrando que de acordo com a Lei Nº 12.305 de agosto de 2010, que institui a Política Nacional de Resíduos Sólidos, todos os lixões existentes no País devem ser desativados, portanto, a instalação de um local apropriado para a disposição dos resíduos gerados na região, torna-se ainda um fator de apoio para a municipalidade no cumprimento da Legislação existente.

2.1.2. Controle da Admissão de Resíduos Sólidos no Aterro

Durante a operação do Aterro Sanitário, um dos principais pontos a ser observado é a tipologia dos resíduos a serem dispostos no local, com um adequado procedimento de controle na entrada do empreendimento, tendo em

vista que o aterro sanitário deverá receber apenas resíduos sólidos (Classe IIA) domiciliares, comerciais e industriais não-perigosos.

O controle de recebimento dos resíduos sólidos será feito inicialmente pela pesagem da carga através de balança rodoviária a ser instalada na entrada do empreendimento. A procedência dos resíduos será verificada, sendo registradas informações como identificação do veículo, placa, motorista e horário. Na saída, após o descarregamento, os caminhões transportadores também serão pesados para o levantamento quantitativo dos resíduos recebidos, possibilitando um acompanhamento de sua evolução ao longo da vida útil do empreendimento, bem como uma análise estatística que poderá tratar de procedências, tipo de resíduo, quantidade, etc.

Para resíduos domiciliares, após checagem da empresa coletora, será realizada uma inspeção visual nas características dos resíduos. Se houver suspeitas de que o material descarregado é incompatível com as características gerais de resíduos domiciliares, o material será separado e submetido a uma avaliação mais profunda, com análises físico-químicas de amostras. No caso de alguma irregularidade, o gerador (ou responsável) será imediatamente comunicado, não sendo admitido o aterramento da carga incompatível de resíduos.

Mais informações em relação aos dispositivos previstos e ao funcionamento do aterro sanitário podem ser obtidos no estudo ambiental – EIA do qual esse estudo de análise de risco – EAR pertence.

2.2. Unidade de Triagem

A tendência atual no gerenciamento de resíduos sólidos é a adoção de sistemas que possibilitem a separação de materiais com potencial para reutilização e/ou reciclagem, ao mesmo tempo em que se minimiza a quantidade de resíduos a ser disposta no solo, na forma de aterro, evitando que maiores extensões superficiais sejam ocupadas por essa disposição.

Com isso, essa prática tem possibilitado a preservação / conservação de recursos naturais, considerando, ainda, o retorno de materiais que podem ser

reutilizados em seus próprios processos produtivos, substituindo matériasprimas "virgens" (aquelas obtidas por outro processo industrial ou extraídas de seu meio natural).

Nesse contexto e tendo em vista a necessidade de valorização dos resíduos que serão destinados ao aterro sanitário, a possibilidade de geração de renda para as famílias da região e ainda a diminuição do volume de resíduos a serem enterrados na área do empreendimento, possibilitando um aumento da vida útil do aterro, será incorporada a Central de Tratamento e Valorização de Resíduos - CTVR uma Unidade de Triagem de Resíduos sólidos.

Na Usina de Triagem e Valorização a ser implantada será possível separar os resíduos que possam ser destinados à reciclagem, tais como: papéis, plásticos, metais e vidros, evitando que esses sejam dispostos no aterro sanitário. A usina a ser implantada é composta por um conjunto de estruturas físicas edificadas, tais como galpão de recepção, triagem e armazenamento de recicláveis, unidades de apoio (escritório, almoxarifado, instalações sanitárias/vestiários, copa/cozinha, entre outras que se fizerem necessárias à atividade).

O fato da Unidade de Triagem ser implantada, na mesma gleba que também comportará o Aterro Sanitário, favorecerá a sua viabilidade técnica e ambiental.

Todas essas estruturas serão implantadas em área cercada, identificada, com paisagismo nas proximidades das estruturas edificadas, além de implantação de barreira vegetal no entorno da cerca-divisa.

A Unidade de Triagem será composta das seguintes estruturas:

- Pátio de caçambas para recepção dos resíduos;
- Silo;
- Peneira rotativa;
- Esteira de triagem;

 Pátio de caçambas e containers para armazenamento dos recicláveis;

A área de recepção do resíduo terá piso impermeabilizado, cobertura, sistema de drenagem pluvial e contenção para efluentes gerados na operação de descarga do resíduo. A altura da cobertura possibilitará a descarga do resíduo, inclusive o de caminhão-basculante.

Mais informações em relação aos dispositivos previstos e ao funcionamento da unidade de triagem podem ser obtidos no estudo ambiental – EIA do qual esse Estudo de Análise de Risco – EAR pertence.

2.3. Unidade de Compostagem de Resíduos Orgânicos

A Unidade de Compostagem de resíduos orgânicos (incluindo podas) deverá ocupar uma edificação no interior da gleba da CTVR, para o processamento de resíduos por meio de um sistema aeróbico.

A Compostagem é um processo de degradação de materiais orgânicos, de origem animal e vegetal (restos e partes de plantas, materiais de poda, restos de alimentos, entre outros), cujo produto final é um material parcialmente humificado, de altíssima qualidade do ponto de vista agronômico e nutricional às plantas.

O processo de compostagem ocorre pela ação de microorganismos (bactérias, fungos e actinomicetes), que ocorrem no ambiente natural, porém algumas variáveis têm que ser atendidas para que não ocorra a liberação de odores, proliferação de moscas e outros insetos, bem como a produção exagerada de chorume.

Dentre as principais variáveis, o projeto de implantação de um sistema de compostagem deve prever:

- Manutenção do ambiente para a proliferação dos microorganismos de interesse;
- Níveis adequados de umidade;
- Níveis adequados de aeração;

- Controle de Temperatura;
- Relação Carbono/Nitrogênio (C/N);
- Preparação da matéria-prima (resíduos) que serão dispostos nas leiras;
- Dimensões e forma da pilha de compostagem.

O processo de compostagem pode ocorrer de três maneiras:

a) Método natural:

A fração orgânica do lixo é levada para um pátio e disposta em leiras. A aeração é feita por revolvimento periódico, sem controle, e de forma manual, para o desenvolvimento do processo de decomposição biológica. Este processo tem um tempo estimado que pode variar de 3 a 4 meses dependendo das condições ambientais do local.

b) Método acelerado por aeração forçada:

A aeração é forçada por tubulações perfurada, sobre as quais se dispõem as leiras. O ar é injetado sob pressão. Este processo pode durar de 2 a 3 meses. Neste método o ar injetado não alcança necessariamente toda massa de resíduos, sendo que a dispersão do ar na leira, após o ar entrar sob a mesma, não atinge de forma uniforme toda massa de resíduos.

c) Método acelerado por revolvimento mecanizado:

A aeração é proporcionada por um completo revolvimento da leira, diariamente, permitindo que haja oxidação de toda massa de resíduos. Além disso, neste método, o composto é triturado a cada revolvimento, produzindo um produto final de melhor qualidade, permitindo catação manual de eventuais contaminantes no processo.

A unidade de compostagem de resíduos orgânicos deverá ocupar aproximadamente uma área de 900 m², com capacidade inicial diária de 4 t/dia.

Ao longo da vida útil do aterro e na medida em que as técnicas operacionais vão sendo dominadas, pretende-se ampliar o recebimento em até 60 t/dia.

O sistema utilizado será o de "leiras revolvidas" ou "Windrow", onde a mistura de resíduos é disposta em leiras, sendo a aeração fornecida pelo revolvimento dos materiais e pela convecção do ar na massa do composto.

Nas áreas próximas à Unidade de Compostagem serão plantadas mudas de Citronella (Cymbopogon nardus), cuja função principal é inibir a presença de insetos que poderiam ser atraídos pela presença dos resíduos orgânicos.

Estrutura e Aspectos Operacionais

O local onde se executa o processo de compostagem, mostrado na Figura 02, é denominado pátio de compostagem, e terá o piso impermeabilizado, possuindo também sistema de drenagem pluvial, canaleta de insuflamento, ponto de iluminação, ponto de torneira para umidificação do material e caixa de coleta de líquidos provenientes da rede de drenagem.

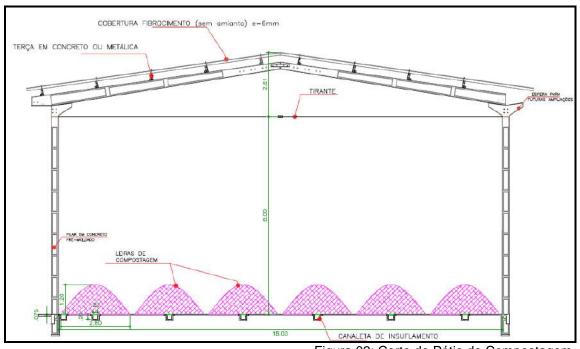


Figura 02: Corte do Pátio de Compostagem. Fonte: Zero Resíduos, 2012.

A disposição da matéria orgânica no pátio deve ocorrer de modo a formar uma leira triangular com dimensões aproximadas de diâmetro entre 2,80 e altura em torno de 1,20 metros. Quando o resíduo diário não for suficiente para a conformação de uma leira com essas dimensões devem-se agregar as contribuições diárias até que se consiga a conformação geométrica.

A umidade garante a atividade microbiológica necessária à decomposição da matéria orgânica. Deverá ser mantido o mais próximo do valor de projeto, pois o excesso de umidade ocupa os vazios e provoca anaerobiose (odores desagradáveis, atração de vetores e chorume - líquido resultante da decomposição natural de resíduos orgânicos, enquanto a baixa umidade diminui a taxa de estabilização).

A temperatura é o principal parâmetro de acompanhamento da compostagem. Ao iniciar a degradação da matéria orgânica, a temperatura altera da fase inicial (t < 35°C) para a fase de degradação ativa (t < 65°C), sendo ideal 55°C, havendo depois a fase de maturação (t entre 30 e 45°C). As temperaturas devem ser verificadas pelo menos no meio da leira e, quando a temperatura estiver acima de 65°C, é necessário o reviramento ou mesmo a modificação da configuração geométrica.

A temperatura começa a reduzir-se após os primeiros 90 dias, tendo início a fase de maturação, quando a massa da compostagem permanecerá em repouso, resultando em um composto maturado. Quando a temperatura demorar a subir para os limites desejáveis, verificar se o material está com baixa atividade microbiológica; nesse caso, adicionar matéria orgânica, além de observar se o material está seco, com excesso de umidade ou muito compactado, e adotar os procedimentos na rotina de operação.

A aeração - fornecimento de oxigênio - garante a respiração dos microrganismos e a oxidação de várias substâncias orgânicas presentes na massa de compostagem. A aeração é obtida com o ciclo de reviramento, em média a cada 3 dias durante os primeiros 30 dias, e a cada 6 dias até terminar a fase de degradação ativa. Esse procedimento contribui para a remoção do excesso de calor, de gases produzidos e do vapor de água.

A diversificação dos nutrientes e sua concentração aumentam a eficiência do processo de compostagem. Os materiais carbonáceos - galhos e resíduos triturados da poda - fornecem energia; já os nitrogenados – folhas, capim, legumes e grama - auxiliam a reprodução dos microrganismos. Não há crescimento microbiano sem nitrogênio.

Na Figura 03, é possível visualizar a disposição das leiras de compostagem de forma espacial.

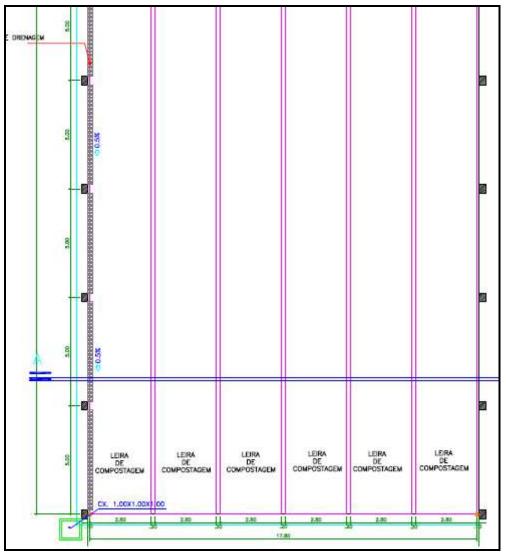


Figura 03: Organização das leiras de compostagem Fonte: Zero Resíduos, 2012.

2.4. Localização das Estruturas da CTVR

Foi realizado estudo para definir a melhor localização para a instalação das diversas estruturas que compõem a CTVR, tais como:

- Aterro Sanitário;
- Escritório/Apoio: nesta área existirá laboratório, área administrativa e apoio (lavador, borracharia e manutenção básica (preventiva e pequenos reparos) – área escritório: 150 m² / área apoio: 100 m²;
- Balança Rodoviária (100 t) área: 54 m².
- Unidade de Triagem de Recicláveis Barracão de Triagem contendo moega e esteira – 693,24 m²;
- Unidade de Compostagem: Barração de compostagem inicialmente manual 900 m².

Em conformidade com os levantamentos realizados na área selecionada, com o estudo de ocupação da área foi possível determinar a melhor forma de distribuição e instalação das estruturas e equipamentos da CTVR – Central de Tratamento e Valorização de Resíduos, apresentadas na Figura 04 a seguir.

Figura 04. Disposição planejada dos equipamentos e unidades da CTVR. Fonte: Zero Resíduos, 2012.

2.5. Características da Região

A Central de Tratamento e Valorização de Resíduos - CTVR será instalada pela empresa Zero Resíduos S/A no município de Teixeira Soares, no Estado do Paraná, em uma gleba de 29,21 ha localizada a Sudoeste do município de Ponta Grossa e Nordeste do município de Teixeira Soares, margeando a porção oeste do Rio Guaraúna tendo coordenadas centrais UTM 572245 O 7215092 S (SAD 69, fuso 22 S), conforme pode ser verificado na Figura 05.

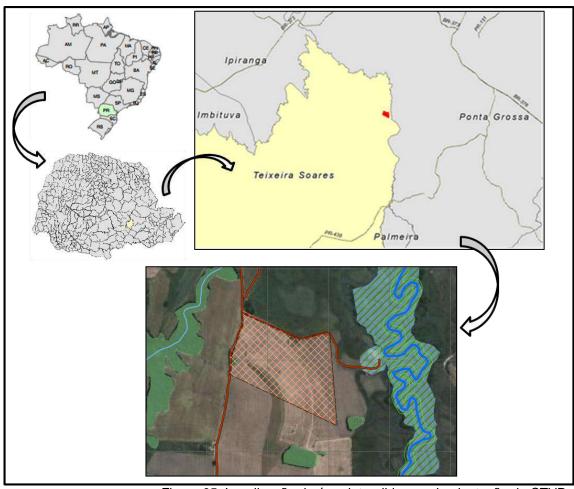


Figura 05: Localização da área intendida para implantação da CTVR. Fonte: Zero Resíduos, 2012.

A economia do município está baseada na atividade agrícola a se destacar a produção de milho e a soja.

Na região do entorno da CTVR, existe pouca ocupação humana, com algumas colônias, como a Colônia Guaraúna, com predominância de grandes propriedades (em extensão, mas não em números). Atualmente existem cerca de 110 famílias morando na região de entorno do empreendimento. Na área pretendida para instalação da CTVR não há residência ou nenhum tipo de ocupação, não sendo necessárias, realocação ou reassentamento de populações para a implantação do empreendimento.

2.5.1. Características Climáticas e Meteorológicas

Os municípios diretamente influenciados pelo empreendimento que são Ponta Grossa e Teixeira Soares se classificam como uma área de clima do tipo

Cfb tendo como características temperatura média no mês mais frio abaixo de 18°C (mesotérmico), com verões frescos, temperatura média no mês mais quente abaixo de 22°C e sem estação seca definida.

O perfil meteorológico da região providencia parâmetros fundamentais na determinação da qualidade do ar, visto que a suspensão de partículas na atmosfera, bem como sua dispersão, são afetados diretamente por fenômenos climáticos como chuvas, ventos e até mesmo pelos níveis de umidade.

Níveis de precipitação pluviométrica, por exemplo, estão inversamente relacionados com a concentração de partículas na coluna de ar, pois as chuvas impedem sua suspensão. Já a intensidade do vento e sua direção devem ser levadas em consideração devido ao fato de que a dispersão das partículas é altamente influenciada por estes fatores.

Através do tratamento de dados históricos obtidos da estação de Ponta Grossa, coletados entre os anos de 1954 à 2001, foram determinadas médias mensais e estabelecidos padrões predominantes para valores de temperatura, umidade relativa, direção e intensidade do vento, precipitação pluviométrica, taxas de evaporação e insolação. Conforme apresentado na Tabela 02.

Tabela 02. Médias e mensais meteorológicos observados durante o período de 1954 à 2001.

Е	stação: PC	NTA GROS	SA / Cód A	NEEL: 0255	0024 Lat.: 2	25°13´S Lo	ong.: 50°	01 W	Alt.: 880m Período	: 1954 - 2001
	TEMPE	RATURA DO) AR (∘C)	U. REL	VEN	то		PITAÇÃO mm)	EVAPORAÇÃO (mm)	INSOLAÇÃO
MÊS	Média	Média máxima	Média mínima	Média (%)	Direção pred.	Veloc. (m/s)	Total	Máxima 24h	Total	Total (Horas)
JAN	21,4	27,6	17,2	78	NE	3,3	186,5	119,6	83,4	178,1
FEV	21,4	27,4	17,4	79	NE	3	161,0	80,8	68,2	163,5
MAR	20,3	26,4	16,2	80	NE	2,9	137,8	102	70,7	175,5
ABR	18	24,2	13,8	79	NE	3,2	101,3	121	67	177
MAI	15,1	21,5	10,5	80	NE	3,1	116,3	115	63	179,9
JUN	13,9	20	9,2	79	NE	3,2	117,7	85,6	59,2	165,5
JUL	13,8	20,2	9,1	77	NE	3,6	95,8	106,4	74,1	191,1
AGO	15,2	21,8	10,2	75	NE	3,7	78,9	77	87,5	190,8
SET	16,4	22,6	11,8	75	NE	4	135,5	72	84,1	152,8
OUT	18	24,3	13,5	76	NE	3,9	152,7	81,8	85,1	173,8
NOV	19,5	25,9	14,8	73	NE	3,9	119,2	89,9	94,2	190,9
DEZ	20,8	26,8	16,3	75	NE	3,6	151,0	89,5	93,7	176,4

Fonte: IAPAR, 2012.

Os dados meteorológicos aqui apresentados foram fornecidos pelo IAPAR (Instituto Agronômico do Paraná) e pelo INMET (Instituto Nacional de Meteorologia).

Mais informações em relação às características da área de influência indireta, de influência direta ou ainda a área diretamente afetada podem ser obtidos no estudo ambiental – EIA do qual esse Estudo de Análise de Risco – EAR, pertence.

3. CARACTERÍSTICAS DOS PRODUTOS ENVOLVIDOS

Para continuidade do estudo é necessário a classificação dos produtos movimentados na CTVR em relação aos riscos físicos, químicos e biológicos, de forma a nortear o levantamento das hipóteses acidentais consideradas no estudo. A seguir é apresentada a tabela 03, onde são descritos os possíveis riscos gerados a partir dos resíduos operados na CTVR.

Tabela 03 – Relação entre os riscos e os resíduos operados na CTVR

Resíduos/Riscos	RSD	Matéria Orgânica
Físicos	Temperaturas altas	Temperaturas altas
Químicos	Fumos e cheiros	Gases e vapores
Biológicos	Vírus, bactérias, fungos e parasitas	Vírus, bactérias, fungos e parasitas

RSD – Resíduos Sólidos Domiciliares Fonte: Zero Resíduos, 2012

Os riscos acima listados se referem aos resíduos a serem dispostos na CTVR antes da disposição no aterro sanitário. A compreensão dos riscos relacionados a cada tipo de resíduo é importante para o planejamento de ações de prevenção principalmente na coleta e transporte do resíduo até a CTVR. Esses resíduos, após serem dispostos no aterro sanitário, passam por uma série de transformações físicas, químicas e biológicas da matéria orgânica, gerando dois tipos de emissões:

- Biogás; e
- Lixiviados;

3.1. Composição das Emissões do Aterro Sanitário

O chorume é um líquido escuro contendo alta carga poluidora. O potencial de impacto deste efluente está relacionado com a alta concentração de matéria orgânica, reduzida biodegradabilidade, presença de metais pesados e de substâncias recalcitrantes.

Tabela 03 – Composição do chorume gerado por um aterro sanitário

Parâmetro	Faixa
рН	4,5 – 9
Sólidos totais	2000 – 60 000
Matéria orgânica (mg/L)	
Carbono orgânico total	30 – 29 000
Demanda biológica de oxigênio (DBO ₅)	20 – 57 000
Demanda química de oxigênio (DQO)	140 – 152 000
DBO ₅ /DQO	0,02 - 0,80
Nitrogênio orgânico	14 – 2500
Macrocomponentes Inorgânicos(mg/L)	
Fósforo total	0,1 – 23
Cloretos	150 – 4500
Sulfatos	8-7750
HCO3	610-7320
Sódio	70-7700
Potássio	50-3700
Nitrogênio amoniacal	50-2200
Cálcio	10-7200
Magnésio	30-15 000
Ferro	3-5500
Manganês	0,03-1400
Sílica	4-70
Elementos traços inorgânicos (mg/L)	
Arsênico	0,01-1
Cádmio	0,0001-0,4
Cromo	0,02-1,5
Cobalto	0,005-1,5
Cobre	0,005-10
Chumbo	0,001-5
Mercúrio	0,00005-0,16

Fonte: Zero Resíduos, 2012

Além da geração do chorume, devido à degradação natural da matéria orgânica na área do aterro sanitário é gerado o biogás, produto esse um composto de diversos gases, a serem apresentados a seguir (Tabela 05).

Tabela 05 – Característica dos gases presentes no biogás em um aterro sanitário

Gás	Concentração típica	Densidade (Kg/m³)	Potencial calorífico (kj/m³)	Solubilidade em água (g/l)	Propriedades gerais
CH₄	45-60%	0,717	35.600	0,0645	Inodoro, incolor, asfixiante, inflamável
CO ₂	35-50%	1,977		1,688	Inodoro, incolor, asfixiante
N ₂	0-10%	1,250		0,019	Inodoro, incolor
O ₂	0-4%	1,429		0,043	Inodoro, incolor
СО	<0,1%	1,250	12.640	0,028	Inodoro, incolor, tóxico, inflamável
H ₂	<0,1%	0,090	10.760	0,001	Inodoro, incolor, inflamável
H ₂ S	0-70ppm	1,539		3,846	Inodoro, tóxico

Fonte: MACIEL (2003).

Utilizando-se dos critérios estabelecidos pela CETESB para a classificação de substâncias químicas quanto a periculosidade, constantes da Norma P4.261 – "Manual de Orientação para a Elaboração de Estudos de Análise de Risco", podemos classificar as emissões do aterro, em inflamáveis ou tóxicas.

3.1. Substâncias Inflamáveis

O critério para a classificação das substâncias inflamáveis manipuladas na CTVR, de acordo com a CETESB, está apresentado na Tabela 06.

Tabela 06 – Critério para Classificação de Substâncias Inflamáveis

Nível de Inflamabilidade	Ponto de Fulgor e/ou Ponto de Ebulição (ºC)
1 - Líquido pouco inflamável	PF = Ponto de Fulgor > 60
2 - Líquido inflamável	37,8 < PF < 60
3 - líquido facilmente inflamável	PF < 37,8 e PE = Ponto de Ebulição > 37,8
4 - Gás ou líquido altamente inflamável	PF < 37,8 e PE < 37,8

Fonte: CETESB, 2003.

3.2. Substâncias Tóxicas

Os critérios para a classificação das principais substâncias tóxicas que podem ser manipuladas na CTVR, de acordo com a Norma CETESB P.4261, estão apresentados nas Tabelas 07 e 08.

Tabela 07 - Critérios para Classificação de Substâncias Tóxicas

Nível de toxicidade	C (ppm.h)
4 – Muito tóxica	C≤ 500
3 – Tóxica	500 < C ≤ 5000
2 – Pouco tóxica	5000 < C ≤ 50000
1 – Praticamente não tóxica	50000 < C ≤ 150000

C = concentração letal 50% (CL50) em ppm x tempo de exposição em horas

Para as substâncias cujos valores de CL₅₀ não estão disponíveis utilizam-se os valores de DL₅₀, via oral para rato ou camundongo, conforme apresentado na Tabela 08.

Tabela 08 - Critérios para Classificação de Substâncias Tóxicas pela DL₅₀

Nível de toxicidade	DL(mg/Kg)
4 – Muito tóxica	DL ₅₀ ≤ 50
3 – Tóxica	50 < DL ₅₀ ≤ 500
2 – Pouco tóxica	$500 < DL_{50} \le 5000$
1 – Praticamente não tóxica	5000 < DL ₅₀ ≤ 150000

C = concentração letal 50% (CL50) em ppm x tempo de exposição em horas

3.3. Considerações Acerca das Substâncias Movimentadas na CTVR

São consideradas como de interesse no Estudo de Análise de Riscos, as substâncias classificadas no nível 3 e 4 de inflamabilidade ou toxicidade de acordo com os critérios estabelecidos na Norma CETESB P4.261.

3.3.1. Materiais de Consumo

Em relação à operação da CTVR, a única substância inflamável que eventualmente pode ser armazenada para utilização, mesmo que em pequena

quantidade é o óleo diesel para o maquinário do aterro, o óleo utilizado na área da CTVR será armazenado em local apropriado, provido de sistema de contenção de vazamentos e de cobertura. Devido às características do óleo, bem como a pequena quantidade armazenada (no máximo dois galões de 100 litros), dispensam a análise detalhada de risco.

3.3.2. Emissões CTVR

Das emissões geradas pelo aterro, existem alguns gases e o material lixiviado que apresenta características de risco patogênico, tóxico e de inflamabilidade que devem ser considerados nesse estudo. Em relação aos gases, será avaliado o gás metano (CH₄) que devido ao volume gerado e por ser considerado inflamável, deverá ser analisado de forma especifica. Da mesma forma, o material lixiviado deve ser quantificado e analisado, pois, poderão existir diversos elementos tóxicos em sua composição.

3.3.2.1. Gás Metano (CH₄)

O metano (CH₄) é um gás que não possui cor (incolor) nem cheiro (inodoro). Considerado um dos mais simples hidrocarbonetos, possui pouca solubilidade na água e, quando adicionado ao ar, torna-se altamente explosivo.

O metano é produzido através dos seguintes processos naturais:

- Decomposição de lixo orgânico;
- Digestão de animais herbívoros;
- Metabolismo de certos tipos de bactérias;
- Vulcões de lama;
- Extração de combustíveis minerais (principalmente o petróleo);
- Aquecimento de biomassa anaeróbica.

Encontramos na atmosfera o gás metano na proporção aproximada de 1,7 ppm (partículas por milhão). Como ele pode ser produzido através de

matéria orgânica, pode ser chamado de biogás. Desta forma, é utilizado como fonte de energia.

Segue abaixo a Tabela 09, com as características do metano (CH₄) produzido no aterro sanitário.

Tabela 09 – Propriedades físico-químicas do metano

Propriedade Físico-Química	Metano
Estado Físico	Gasoso
Cor	Incolor
Odor	Inodoro
Ponto de ebulição a 1atm (°C)	-161,5
Ponto de fusão a 1atm (°C)	-182,6
Temperatura de autoignição (°C)	540,4
Faixa de inflamabilidade	5 a 15% em volume no ar
Solubilidade em água	Insolúvel
Solubilidade em solventes orgânicos	Solúvel
Peso molecular	16,04
Temperatura critica (°C)	-82,5

Fonte: CETESB, 2005.

3.3.2.1.1. Quantificação do Gás Metano (CH₄)

Com o objetivo de avaliar os riscos gerados a partir do metano originado no aterro sanitário, é necessário quantificar sua produção ao longo da vida útil do aterro, definindo os volumes a serem canalizados e tratados.

Para o cálculo do potencial de geração de metano na Central de Tratamento e Valorização de Resíduos - CTVR - Teixeira Soares, foi utilizada a metodologia sugerida pelo IPCC - INTERNACIONAL PAINEL ON CLIMATE CHANGE, contida no Módulo 6 – Lixo, do Guia para Inventários Nacionais de Gases de Efeito Estufa, Volume 2: Livro de Trabalho, de 1996. A fórmula é baseada na composição do resíduo e na quantidade de carbono em cada componente de sua massa, conforme a Tabela 10.

Tabela 10 - Teor de carbono orgânico degradável para cada componente presente no resíduo

Componente	Porcentagem COD (em massa)
Papel e papelão	40
Resíduos de parques e jardins	17
Restos de alimentos	15
Tecidos	40
Madeira	30

Fonte: IPCC, 1996.

Para o cálculo da emissão de metano (CH₄) pode-se estimar o seguinte valor, pela Equação 5.4 do Guia do IPCC, 1996:

$$COD = (0.4 \times A) + (0.17 \times B) + (0.15 \times C) + (0.3 \times D)$$

Sendo:

COD: carbono orgânico degradável [kg de C/kg de RSD];

A: fração de papel e papelão no resíduo

B: fração de resíduos originários de parques e jardins

C: fração de restos de alimentos no resíduo

D: fração de tecidos no resíduo

E: fração de madeira no resíduo

Em função das quantidades de alimentos e resíduos orgânicos estarem juntas, a equação (1) foi modificada, conforme apresentado abaixo:

$$COD = (0.4 \times A) + (0.16 \times (B + C)) + (0.3 \times D)$$

Onde:

A: papel, papelão e tecido = 22,0%

B+C: alimentos e resíduo orgânico: 43,0%

D: madeira: 2,0%

O que resulta em:

COD = 0,174

Cálculo do Potencial de Geração de Metano (L₀):

 $L_0 = MCF \times DOC \times COD_f \times F \times 16/12$

Onde:

MCF = 1 (aterro bem gerenciado)

COD = 0,174

COD_f = 0,77 (fração altamente biodegradável no resíduo Brasileiro)

F = 50,0% (como o aterro não entrou em operação, adotaremos uma relação de 50% de CH₄ para 50% de CO₂ a ser gerado na fase metanogênica, através de reações anaeróbias).

16/12: conversão de carbono para metano

Resultando:

 $L_0 = 0.089 G_g CH_4/G_g$ de resíduo

Considerando a densidade do CH_4 (0° C e 1,013 bar) como 0,0007168 t/m^3 , tem-se:

 $L_0 = 124,16 \text{ m}^3 \text{ CH}_4/\text{tonelada de resíduo}$

A emissão de metano pode ser calculada de acordo com as equações abaixo.

E.
$$M. = k.R_x.L_0.e^{-k (x-T)}$$

Ou,

$$k = ln_2/t_{1/2}$$

Onde:

LFG = emissão de metano (m³CH₄/ano)

k = constante de decaimento (1/ano);

 R_x = fluxo de resíduo no ano (kgRSD);

L₀ = potencial de geração de metano (m³biogás/kgRSD);

x = ano atual;

T = ano de deposição do resíduo no aterro; e,

 $t_{1/2}$: tempo médio para 50% da decomposição = 9 anos

A Tabela 11 apresenta a vazão de metano (m³/ano) na Central de Tratamento e Valorização de Resíduos - CTVR - Teixeira Soares, desde o ano de 2013 até 2032 (a operação prevista para o aterro é de pelo menos doze anos). A Figura 06 mostra o comportamento da vazão do metano durante esses anos.

Tabela 11 – Vazão de metano (CH₄)

Ano	M³ CH₄/Ano	M³ CH₄/Ano - Acumulado
Allo	Wi- ClipAllo	W CHAANO - Acumulado
2013	150.710	150.710
2014	142.587	293.297
2015	134.922	428.219
2016	127.653	555.872
2017	117.497	673.369
2018	103.579	776.948
2019	108.889	885.837
2020	114.472	1.000.310
2021	120.341	1.120.651
2022	126.512	1.247.163
2023	132.998	1.380.161
2024	139.817	1.519.977
2025	146.985	1.666.963
2026	154.522	1.821.484
2027	162.444	1.983.928
2028	170.773	2.154.701
2029	179.528	2.334.229
2030	188.733	2.522.962
2031	198.410	2.721.372
2032	208.582	2.779.244

Fonte: Zero Resíduos, 2012.

O resultado da aplicação das fórmulas descritas acima é demonstrado na Figura 06 a seguir.

Figura 06: Geração de metano durante a operação do aterro sanitário. Fonte: Zero Resíduos, 2012.

A curva tem um comportamento crescente durante a o período em que o aterro recebe lixo, pois a cada nova tonelada de lixo depositada, soma-se um novo potencial de geração de biogás. Percebe-se que a partir do ano de 2030, ocorre a estabilização na geração do metano e a partir daí a curva é regida pela constante de decaimento "k", referente à degradação da matéria orgânica no tempo.

3.3.2.1.2. Quantificação do Lixiviado gerado no aterro

Para a estimativa da quantidade de chorume gerada no aterro sanitário foi utilizado o método do balanço hídrico, onde se supõe que a quantidade de percolado a ser drenada na base da plataforma (PERCOLADO) é igual a:

$$PERCOLADO = P - ES - \Delta AS - ER$$

Onde:

PER - Altura do Percolado (mm);

P – Precipitação (mm);

ES - Escoamento Superficial (mm);

AS - Água Armazenada no Solo (mm);

ER - Evapotranspiração Real (mm/dia);

Através de dados climatológicos obtidos da rede de estações meteorológicas do IAPAR – Instituto Agronômico do Paraná efetuou-se estimativa mensal de geração de percolado, como mostra a Tabela 12:

Tabela 12: Método do Balanço Hídrico

ITEM (mm)	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	ANUAL
EP	67,8	54,5	58,7	50,9	45,9	43,2	51,5	67,1	64	64,1	73,4	71,7	712,8
Р	180	147,4	136,7	103,9	120,6	115,4	112,7	85,6	143,2	168,6	127,4	155,7	1597,7
C'	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	
ES	30,6	25	23,2	17,6	20,5	19,6	19,1	14,5	24,3	28,6	21,6	26,4	
I	149,8	122,3	113,4	86,2	100,0	95,7	93,5	71	118,8	139,9	105,7	129,2	
I-EP	82,0	67,8	54,7	35,3	54,1	52,5	42,0	3,9	54,8	75,8	32,3	57,5	
Neg (I-P)	0	0	0	0	0	0	0	0	0	0	0	0	
AS	150	150	150	150	150	150	150	150	150	150	150	150	
∆AS	0	0	0	0	0	0	0	0	0	0	0	0	
ER	67,8	54,5	58,7	50,9	45,9	43,2	51,5	67,1	64	64,1	73,4	71,7	712,8
PER	82	67,8	54,7	35,3	54,1	52,5	42,0	3,9	54,8	75,8	32,3	57,5	613,2

Fonte: Zero Resíduos, 2012.

Pode-se então calcular a geração de percolados para cada fase de operação do aterro, conforme apresentado na Tabela 13:

QM = PER * Acont/ 2.592.000

Onde:

QM – Vazão Mensal;

PER - Altura do Percolado (mm);

Acont. – Área de Contribuição Aterro (m²).

Tabela 13: Geração de Percolados – Método do Balanço Hídrico

	GERAÇÃO DE PERCOLADOS					
FASE	ÁREA EXTERNA (TOPO) (M²)	PERC. (m³/d)	ÁREA INTERNA (BASE) (m²)	PERC. (m³/d)	ÁREA MÉDIA (m²)	PERC. (m³/d)
1	14578,13	16	8944,33	10	14701,54	16
2	16641,81	18	9574,24	10	16385,03	18
3	14578,13	16	8944,33	10	14701,54	16
4	26972,13	30	20102,67	22	29421,75	32
5	14450,36	16	7070,55	8	13450,57	15
6	35850,03	39	28615,42	31	40290,91	44
7	12606,16	14	5926,00	6	11582,60	13
8	44854,66	49	37127,29	41	51238,72	56
9	11925,96	13	6016,87	7	11214,27	12
10	51047,04	56	43138,39	47	58865,89	64
11	9075,81	10	5898,95	6	9359,23	10
12	37589,72	41	32059,68	35	43530,88	48
13	8051,97	9	5110,20	6	8226,36	9
14	35032,50	38	28917,86	32	39968,98	44
15	5059,89	6	2903,95	3	4977,40	5
16	28899,00	32	22993,99	25	32433,12	35
17	2066,24	2	907,06	1	1858,31	2
18	20635,66	23	14610,50	16	22028,85	24
19	10475,40	11	6180,81	7	10410,13	11
20	6285,24	7	3708,49	4	6246,08	7
21	3771,14	4	2225,09	2	3747,64	4
FINAL	410446,98	449	300976,67	329	444639,78	487

Fonte: Zero Resíduos, 2012.

O resultado da aplicação das fórmulas descritas acima é demonstrado na Figura 07 a seguir.

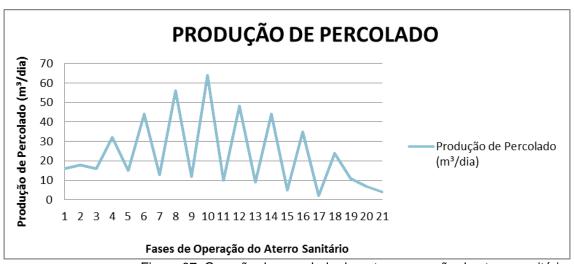


Figura 07: Geração de percolado durante a operação do aterro sanitário. Fonte: Zero Resíduos, 2012.

A curva que representa o comportamento da geração do percolado no aterro é bastante aleatória, pois as fases do aterro não têm dimensões padronizadas. O que pode ser verificado é que a geração em m³/dia do percolado diminui ao longo da vida útil do aterro.

4. IDENTIFICAÇÃO DE PERIGOS

4.1 Introdução

Esse capítulo descreve a metodologia utilizada para a identificação dos perigos relativos às instalações da Central de Tratamento e Valorização de Resíduos - CTVR, e apresenta como resultado as hipóteses acidentais identificadas por meio da aplicação da técnica Análise Preliminar de Perigos – APP.

O item 4.2 desse estudo apresenta uma breve descrição da técnica e da metodologia utilizada para a identificação dos perigos (APP), enquanto o item 4.3 apresenta a consolidação das hipóteses de acidentes, a partir da metodologia aplicada.

4.2. Metodologia

Há muitas técnicas disponíveis para se identificar perigos intrínsecos a um sistema, entre as quais se destacam: Análise Preliminar de Perigos - APP (*Preliminary Hazard Analysis*) e Análise de Perigos e Operabilidade (*Hazard and Operability Analysis – HazOp*). Outras técnicas também podem ser usadas, tais como "E se?" (What if?) e Análise de Modos de Falhas e Efeitos (AMFE).

A Análise Preliminar de Perigos - APP, objetiva prever e identificar os riscos envolvidos em determinado empreendimento, tanto na fase de implantação quanto na fase de operação, com o intuito de eliminar, minimizar ou controlar os riscos antes que estes se materializem, exigindo gastos para o replanejamento da planta do empreendimento.

A qualificação dos riscos é realizada com base nos parâmetros da norma militar americana MIL-STD-882 (*System Safety Program Requirements*), adotada como padrão em inúmeras situações.

A metodologia foi desenvolvida pelo Departamento de Defesa dos Estados Unidos e baseia-se no preenchimento de tabela descrita a seguir, contendo oito colunas.

1a coluna: Número de Ordem

Preenchida com um número de ordem identificador do risco.

2ª coluna: Perigos Identificados

Define os perigos para o sistema em estudo, ou seja, eventos que podem causar danos às instalações, aos operadores, meio ambiente, entre outros, como por exemplo, vazamentos de produto, mau funcionamento de equipamentos, etc.

3ª coluna: Causas

Identificação das causas básicas possíveis dos perigos, definidas como evento ou sequência que produzem uma consequência. Essas causas podem envolver tanto falhas intrínsecas de equipamentos, como erros de operação e manutenção.

4ª coluna: Consequências

Conclusão dos resultados de uma ou mais causas é definido como consequência.

5^a coluna: Medidas Preventivas e Corretivas

Listagem das medidas estruturais e não estruturais, procedimentos, de forma a prevenir ou corrigir eventos indesejáveis, correspondentes a cada perigo identificado.

6^a coluna: Categoria de Probabilidade de Ocorrência

A Tabela 14 apresenta as categorias de probabilidade de ocorrência de um determinado evento.

Tabela 14 – Probabilidade de ocorrência de um determinado evento

Categoria	Denominação	Faixa de Frequência (anual)	Descrição
А	Frequente	f > 10-1	Esperado de ocorrer várias vezes durante a vida útil do processo/ instalação.
В	Provável	10-2< f < 10-1	Esperado ocorrer até uma vez durante a vida útil do processo/ instalação.
С	Improvável	10-3< f < 10-2	Pouco provável de ocorrer durante a vida útil do processo/ instalação.
D	Remota	10-4< f < 10-3	Não esperado ocorrer durante a vida útil do processo/ instalação.
E	Extremamente Remota	f < 10-4	Conceitualmente possível, mas extremamente improvável de ocorrer durante a vida útil do processo/ instalação.

Fonte: P4.261/2003.

7ª coluna: Categoria das Consequências quanto a Severidade

A Tabela 15 apresenta as categorias de severidade quando da ocorrência de um determinado evento.

Tabela 15 - categorias de severidade quando da ocorrência de um determinado evento

I – Desprezível	A falha não irá resultar numa degradação maior do sistema, nem irá produzir danos funcionais ou lesões, ou contribuir com um risco ao sistema.
II – Marginal ou Limítrofe	A falha irá degradar o sistema numa certa extensão, porém sem envolver danos maiores ou lesões, podendo ser compensada ou controlada adequadamente.
III – Crítica	A falha irá degradar o sistema causando lesões, danos substanciais, ou irá resultar num risco inaceitável, necessitando ações corretivas imediatas.
IV – Catastróficas	A falha irá produzir severa degradação ao sistema resultando em uma perda total, lesões ou óbito.

Fonte: P4.261/2003.

8ª coluna: Classificação de Risco

Correlacionando-se os valores obtidos em Probabilidade e Severidade, é possível qualificar o evento.

Riscos:

- Risco Crítico (RC);
- Risco Severo (RS);
- Risco Moderado (RM);
- Risco Baixo (RB); e
- Risco Desprezível (RD).

Os resultados são apresentados em planilha padronizada, conforme apresentado na Figura 8.

	APP – ANÁLISE PRELIMINAR DE PERIGOS						
Empresa: CTVR - Zero Resíduos			OS	Sistema:	Data:		
Referência		1	1	Revisão:	Folha:		
N° ORDEM	PERIGO	CAUSAS	EFEITOS	CATEGORIA DE SEVERIDADE	OBSERVAÇÕES/ RECOMENDAÇÕES		

Figura 08: Geração de percolado durante a operação do aterro sanitário. Fonte: Zero Resíduos, 2012.

Vale ressaltar que a APP considera apenas a fase de operação da CTVR, não estando compreendida nesse estudo a fase de instalação do empreendimento.

Em função de o percolado ser coletado e no primeiro momento voltar ao sistema através da recirculação mecânica (será construída junto ao aterro uma ETE para tratamento do material lixiviado do aterro após o terceiro ano de operação da CTVR), o que configura um risco relativamente baixo, e/ou inflamáveis, o grande perigo da fase de operação decorre basicamente da explosão do aterro, pelo acúmulo de gás provindo da decomposição da matéria orgânica nas trincheiras de resíduos.

Para os efeitos gerados por esta hipótese foi atribuído um grau de severidade, de acordo com o critério apresentado na Tabela 15.

Em relação aos impactos gerados pelo aterro sanitário, podemos listar ainda os danos à vegetação (em decorrência da instalação do aterro), à saúde pública (devido à proliferação de vetores) e o odor, que pode ser gerado pelo aterro. Abaixo, segue uma ilustração (Figura 09) dos impactos e riscos gerados por um aterro em sua fase de operação, representados de forma local, regional e global.

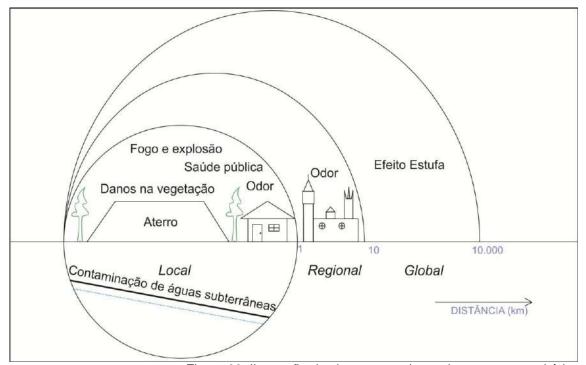


Figura 09: Ilustração dos impactos e riscos de um aterro sanitário.

Fonte: Zero Resíduos, 2012.

Em relação a cada um dos problemas gerados pelo aterro sanitário, segue abaixo a medida de controle a ser adotada pela Zero Resíduos S/A.

Contaminação das águas subterrâneas: A área de acondicionamento dos resíduos será toda impermeabilizada com geomembranas de PEAD com 2mm de espessura, impedindo que o liquido gerado pela decomposição da matéria orgânica entre em contato com o solo e possa contaminá-lo. Durante a operação do aterro será instalada uma ETE para tratar esse percolado, devolvendo ele em padrões de qualidade satisfatórios ao meio ambiente.

Danos a vegetação: A área onde será instalada a CTVR é bastante antropizada, dessa forma, existe uma cobertura vegetal muito pequena e que será suprimida para a instalação do empreendimento. Como não existem espécies com restrição de corte, a vegetação será removida e durante a implantação do empreendimento serão plantadas arvores e vegetação para compor o cercamento vivo do terreno, o que minimizará o impacto relacionado a supressão realizada, devolvendo em numero maior o total de arvores cortadas.

Saúde Pública: A instalação de um aterro sanitário pode atrair diversos vetores transmissores de doenças, como ratos, baratas e aves oportunistas como o urubu, por exemplo. Contudo, devido ao processo de cobertura a ser realizado após o descarregamento dos resíduos no aterro e aos equipamentos adotados para afugentar as aves e de captura para os roedores, o aterro sanitário deve representar um risco relativamente baixo para a saúde pública e os trabalhadores envolvidos no empreendimento.

Odor: A CTVR será dotada de cerca viva, composta por arvores e vegetação especificas para garantir o paisagismo do local e evitar que algum odor gerado pelos resíduos possa afetar a área externa do empreendimento. Outro instrumento utilizado para evitar que o odor dos resíduos possa configurar um

problema para aterro é a cobertura a ser realizada sempre que ocorrer o descarregamento dos resíduos, o que impede que o odor acabe sendo perceptível de forma mais sensível.

Fogo e Explosão: A CTVR contará com um sistema de drenagem e captação dos gases produzidos nas trincheiras aterradas, permitindo tratar o biogás gerado pelo aterro sanitário, através da queima através de queimadores a serem instalados no empreendimento. Ao drenar o gás do interior das trincheiras, o risco de explosão é reduzido para níveis praticamente nulos, restando apenas o monitoramento constante para evitar a queima dos resíduos não aterrados.

Efeito Estufa: Ao capturar e tratar os gases gerados pelo aterro a ZERO RESÍDUOS minimiza de forma bastante considerável a emissão de gases responsáveis pelo efeito estufa, pois, a queima do metano, gera o gás carbônico que é 20 vezes menos agressivo a camada de ozônio que o metano.

5. ANÁLISE DE CONSEQUÊNCIAS

5.1. Introdução

A presente análise contempla avaliar a área vulnerável que deve ser considerada para a disposição de resíduos inflamáveis e/ou tóxicos na área da CTVR, localizada em Teixeira Soares-PR.

Para essa análise foram utilizados os critérios estabelecidos pela CETESB, constantes da Norma P4.261 – "Manual de Orientação para a Elaboração de Estudos de Análise de Risco", conforme descrito a seguir.

5.2. Metodologia para o Cálculo da Distância Segura

Segundo a Norma P4.261 da CETESB, para as substâncias inflamáveis dos níveis 4, gasosas ou líquidas e 3, líquidas com pressões de vapor superior a 120 mmHg a 25°C, a distância segura a ser adotada é aquela referente ao nível de sobrepressão de 0,1 bar, decorrente da explosão de uma nuvem inflamável, cuja dispersão ocorre até a concentração correspondente ao Limite Inferior de Inflamabilidade (LII). Já para as substâncias inflamáveis do nível 3 que possuem pressão de vapor igual ou inferior a 120 mmHg a 25°C, a distância adotada é referente ao flashfire, cuja dispersão ocorre até a concentração correspondente à metade do Limite Inferior de Inflamabilidade (LII). Nesse contexto segue abaixo a tabela (Tabela 16) com as distâncias seguras para cada volume de metano.

Com base na geração de metano pelo aterro sanitário que é apresentada na Tabela 10, podemos verificar que o total de m³CH₄/Ano gerado até o ano de 2032, é de 2.779.244. Dessa forma, e como não existem parâmetros para avaliar o potencial de criação dos bolsões de gás metano no interior das trincheiras, adotaremos para avaliação da distância segura um bolsão de gás hipotético de 20000 kg, o que equivale a aproximadamente

8000m³. Considerando esse volume de metano, à distância considerada segura a ser adotada é de 132 metros.

Tabela 16 - Relação Entre as Quantidades de Substâncias Inflamáveis e Distâncias Seguras

Massa (Kg)	Distância (m)
8500	99
9000	101
9500	103
10000	104
11000	107
12000	110
13000	113
14000	115
15000	118
16000	120
17000	122
18000	124
19000	130
20000	132
30000	156
40000	170
50000	182
60000	192
70000	202
80000	213
90000	223
100000	232
150000	265
200000	289
250000	318
300000	337
350000	354
400000	369
450000	385
500000	399

Fonte: P4.261/2003.

5.3. Considerações Finais

Tomando por base a hipótese considerada no item anterior e observando-se a localização do aterro sanitário no Layout Geral da CTVR, localizada em Teixeira Soares-PR, pode-se concluir que a distância de 132 m

referente à projeção de uma explosão do aterro não extrapola os limites da empresa, conforme apresentado na Figura 10 a seguir.

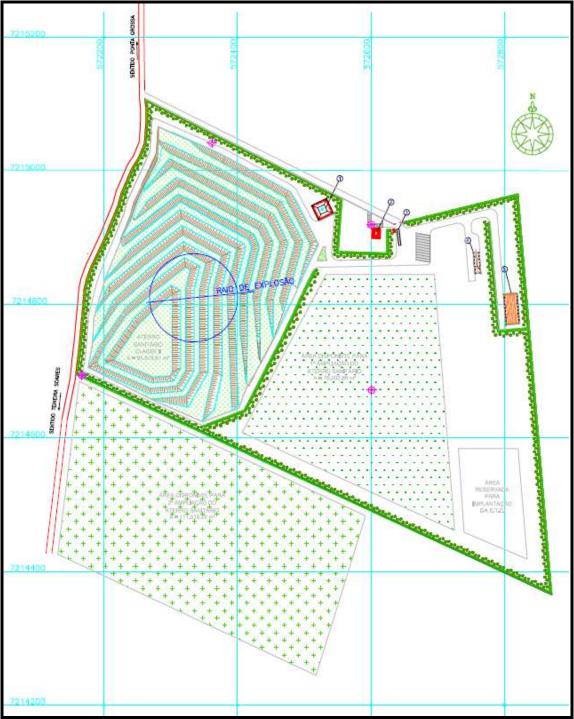


Figura 10: Ilustração do limite de segurança definido para o aterro sanitário. Fonte: Zero Resíduos, 2012.

Um aspecto importante a ressaltar é que incidentes como a explosão de um aterro sanitário é extremamente raro, uma vez que atualmente os aterros

sanitários são dotados de sistema de captação e drenagem do biogás o que evita o surgimento dos bolsões de gás no interior das trincheiras. Dessa forma, para que acidentes aconteçam é necessário que haja uma falha nessa tubulação.

6. ESTIMATIVA E AVALIAÇÃO DOS RISCOS

6.1. Introdução

Este capítulo apresenta os resultados das estimativas dos Riscos das Instalações da CTVR.

A estimativa e avaliação dos riscos serão expressas através do risco individual e do risco social na área de influencia da CTVR.

6.2. Risco Social

6.2.1. Conceito

O risco social estabelece a relação de distribuição acumulativa da probabilidade de ocorrência do evento acidental com o número esperado de fatalidades de indivíduos situados na área de impacto para cada cenário de acidente. Assim, o risco social diz respeito à população presente na zona de alcance dos efeitos físicos gerados pelos diferentes cenários de acidentes.

6.2.2. Resultados do Risco Social

Em virtude dos cenários de acidente não extrapolarem os limites da área da CTVR, foi considerado que não existem riscos sociais a significativos para o empreendimento.

6.3. Risco Individual

6.3.1. Conceito

Os riscos individuais expressam a preocupação com os riscos para cada um dos membros da população exposta e visam responder a perguntas tais como:

Qual a chance de eu vir a ser afetado?

 Qual a chance de danos a um pequeno grupo de pessoas situadas em determinada posição?

Pode haver casos em que os riscos sociais são baixos porque a população exposta não é grande, no entanto, alguns membros da população estão expostos a riscos individuais inaceitavelmente altos. Os indicadores de risco individual são os que poderiam indicar tal situação.

6.3.2. Critério de Tolerabilidade – Risco Individual

O critério de tolerabilidade utilizado foi o definido na Norma CETESB P4.261, no qual a curva de iso-risco correspondente a 1,0 x 10⁻⁵/ano não deve envolver parcial ou totalmente uma ocupação sensível.

6.3.3. Resultados do Risco Individual

O risco individual é apresentado por meio dos contornos de iso-risco. Essas linhas representam de forma gráfica os níveis de risco nas circunvizinhanças das instalações em estudo. Desta forma, foram obtidos os contornos de risco individual, apresentados na Figura 11 a seguir.

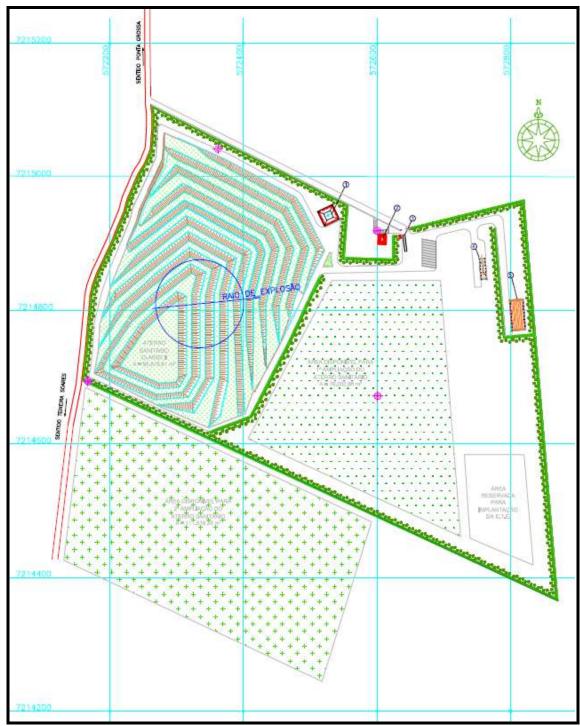


Figura 11: Ilustração do contorno de risco individual no empreendimento. Fonte: Zero Resíduos, 2012.

6.4. Resultados Obtidos

Ao avaliar os resultados obtidos através do estudo realizado e dos riscos associados às instalações da CTVR, pode-se concluir que:

- O risco social, devido à magnitude de uma eventual explosão no aterro sanitário não extrapolar a área do empreendimento, pode ser caracterizado como Região Perfeitamente Tolerável;
- Em relação ao risco individual, que segundo a CETESB, correspondente a 1,0 x 10⁻⁵ oc/ano não foi verificado nenhum risco para à população do entorno da CTVR.

Avaliando os resultados desse estudo e observando os critérios de definidos como toleráveis pela Norma CETESB P4.261, conclui-se que os riscos da CTVR são plenamente toleráveis.

7. CONCLUSÕES E RECOMENDAÇÕES

As consequências, apresentadas neste EAR, demonstram que as distâncias atingidas pelos efeitos físicos decorrentes dos eventos acidentais estudados não atingem a comunidade externa.

Embora tenham sido estimados valores relativamente altos para a concentração de gás no interior do aterro em possíveis bolsões a serem criados, os cenários acidentais previstos não extrapolaram os limites do empreendimento alcançado a comunidade externa.

Para minimizar os riscos associados à implantação da CTVR a ser instalada no Município de Teixeira Soares, no Estado do Paraná, recomendase a adoção de todos os mecanismos descritos no estudo ambiental — EIA, permitindo a coleta e drenagem dos lixiviados e do biogás gerado no interior do aterro sanitário. Outra recomendação é que as instalações a serem implantadas tenham inspeção e manutenção periódica, a fim de garantir seus resultados operacionais e por fim evitar possíveis acidentes.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- AMERICAN INSTITUTE OF CHEMICAL ENGINEERS (AICHE).
 Guidelines for Chemical Process Quantitative Risk Analysis.
 Ed. Center for Chemical Process Safety of the American Institute of Chemical Engineers, New York, 2000.
- CETESB Manual de Orientação para Elaboração de Estudos de Análise de Riscos, Maio 2003.
- TNO. CPR 18 E: Guidelines for quantitative risk assessment: "Purple Book". 1. Ed. Committee for Prevention of Disasters, 1999.

9. EQUIPE TÉCNICA

Coordenação

• Jean Carlos Padilha

Engenheiro Agrônomo / Engenheiro de Segurança do Trabalho CREA/PR - 106158/D

Coordenação Adjunta

Margarete Fuckner

Gestora Ambiental

CRQ: 09903439 - IX Região/PR

Anotação de Responsabilidade Técnica – ART referente à Elaboração do presente EAR – ESTUDO DE ANÁLISE DE RISCO

- ART CREA/PR nº 20124516191
- Responsabilidade Técnica: JEAN CARLOS PADILHA